Emerging reconfiguration techniques that include partial dynamic reconfiguration and partial bitstream relocation have been addressed in the past in order to expose the flexibility of field programmable gate array at runtime. Partial bitstream relocation is a technique used to target a partial bitstream of a partial reconfigurable region (PRR) onto other identical reconfigurable regions inside an FPGA, while partial dynamic reconfiguration is used to target a single reconfigurable region. Prior works in this domain aim to minimize "relocation time" with the help of on-chip or on-line processing. In this thesis, a novel PRR-PRR relocation algorithm is proposed and implemented both in software and hardware. Dedicated hardware architecture, called the accelerated relocation circuit (ARC), is designed and presented for fast relocation. An analytical model is also proposed to evaluate the performance of the PRR-PRR relocation algorithm and highlight the speed-up obtained by the proposed hardware implementation. ARC has been tested on two categories of designs: dynamically scalable systolic array designs and fault tolerant designs. It has been compared against the software implementation of the algorithm, BiRF, hardware architecture for bitstream relocation, and a software solution for bitstream relocation. An average speed-up of 153x for ARC over BiRF is observed, with the additional advantage of not storing any bitstreams, thus saving invaluable block random access memory (BRAMs). Accuracy of proposed analytical model was found to be more than 95% for all the test cases.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1651 |
Date | 01 May 2010 |
Creators | Kallam, Ramachandra |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0023 seconds