Electrooculogram (EOG) data was used to develop, adjust and validate a method for drowsiness detection in drivers. The drowsiness detection was based on changes in blink behaviour and classification was made on a four graded scale. The purpose was to detect early signs of drowsiness in order to warn a driver. MATLAB was used for implementation. For adjustment and validatation, two different reference measures were used; driver reported ratings of drowsiness and an electroencephalogram (EEG) based scoring scale. A correspondence of 70 % was obtained between the program and the self ratings and 56 % between the program and the EEG based scoring scale. The results show a possibility to detect drowsiness by analyzing blink behaviour changes, but that inter-individual differences need to be considered. It is also difficult to find a comparable reference measure. The comparability of the blink based scale and the EEG based scale needs further investigation.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2578 |
Date | January 2004 |
Creators | Svensson, Ulrika |
Publisher | Linköpings universitet, Institutionen för medicinsk teknik, Institutionen för medicinsk teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds