Early post-implantation vertebrate embryos are shaped by complex cellular and molecular mechanisms. In mice, the visceral endoderm, an extraembryonic cell lineage that appears before gastrulation, provides several important functions such as nutrition and mechanical protection. My thesis research focused on the role of the visceral endoderm in embryo patterning, a newly discovered function for this tissue. My results showed that an interplay between two subpopulations of visceral endoderm the anterior and posterior visceral endoderm, located on the opposite sides of the developing conceptus, are critical for the establishment of the anteroposterior body axis of the embryo. I also found that senescence-associated β-galactosidase activity delineates the visceral endoderm marking apical vacuole, a lysosomal-like organelle. This however indicates the nutritional function of visceral endoderm cells rather than a senescent population. My studies highlight the fundamental role of extraembryonic tissues in patterning mammalian embryos as opposed to housekeeping roles. They also reveal important difference when conducting studies at the organismal level rather than in cells in culture.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1697 |
Date | 28 February 2014 |
Creators | Huang, Tingting |
Publisher | eScholarship@UMassChan |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Morningside Graduate School of Biomedical Sciences Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved. |
Page generated in 0.0018 seconds