Return to search

Utilizing Social Bookmarking Tag Space for Web Content Discovery: A Social Network Analysis Approach

Social bookmarking has gained popularity since the advent of Web 2.0. Keywords known as tags are created to annotate web content, and the resulting tag space composed of the tags, the resources, and the users arises as a new platform for web content discovery. Useful and interesting web resources can be located through searching and browsing based on tags, as well as following the user-user connections formed in the social bookmarking community. However, the effectiveness of tag-based search is limited due to the lack of explicitly represented semantics in the tag space. In addition, social connections between users are underused for web content discovery because of the inadequate social functions. In this research, we propose a comprehensive framework to reorganize the flat tag space into a hierarchical faceted model. We also studied the structure and properties of various networks emerging from the tag space for the purpose of more efficient web content discovery.The major research approach used in this research is social network analysis (SNA), together with methodologies employed in design science research. The contribution of our research includes: (i) a faceted model to categorize social bookmarking tags; (ii) a relationship ontology to represent the semantics of relationships between tags; (iii) heuristics to reorganize the flat tag space into a hierarchical faceted model using analysis of tag-tag co-occurrence networks; (iv) an implemented prototype system as proof-of-concept to validate the feasibility of the reorganization approach; (v) a set of evaluations of the social functions of the current networking features of social bookmarking and a series of recommendations as to how to improve the social functions to facilitate web content discovery.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195123
Date January 2010
CreatorsWei, Wei
ContributorsRam, Sudha, Ram, Sudha, Zeng, Daniel, Amir, Rabah
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds