Return to search

Protection of carbon anode against air burning : a new approach to apply and understand the inhibiting effect of boron impregnation

L’électrolyse de l’aluminium est un processus consommateur en énergie et en ressources (matières premières, personnel qualifié, temps, etc.). De nombreux projets de recherche sont en cours à travers le monde dans le but d’améliorer l’efficacité du procédé de fabrication de l’aluminium, de diminuer les rejets toxiques de gaz (CO2, CO, CF4, C2F6…) et d’en réduire les coûts de production. Un des problèmes actuels de l’électrolyse de l’alumine est la consommation excessive des anodes en carbone. En effet, ces anodes, lorsqu’elles sont chauffées à haute température, sont attaquées par l’air ambiant entre 400 et 600 °C, et par le CO2 à 960 °C, ce qui a pour conséquence d’entraîner une surconsommation de carbone, réduisant ainsi la capacité de fabrication de l’aluminium métallique par kg de carbone consommé. Actuellement, la durée de vie moyenne d’une anode est entre 20 et 30 jours. L’objectif de ce projet est de diminuer la vitesse de réaction à l’air de l’anode. Différentes méthodes ont été élaborées afin d’obtenir une protection efficace et économique contre le phénomène d’oxydation à l’air et au CO2 réduisant ainsi la surconsommation en carbone de l’anode. L’oxyde de bore étant connu comme inhibiteur de la réaction carbone/oxygène, des essais ont été réalisés dans le but de produire un revêtement sur l’anode et ont permis de confirmer l’effet inhibiteur de l’oxyde de bore sur la réaction d’oxydation à l’air, permettant ainsi la protection des anodes de carbone. L’influence de chacun des paramètres (température, concentration, durée d’imprégnation dans la solution, etc…), ont été également étudiés. La tomographie par rayons X a démontré que l’anode est principalement attaquée sur la surface et que le revêtement d’oxyde de bore créé une barrière physique empêchant l’accès de l’oxygène à l’anode. Des études plus approfondies ont été réalisées afin de comprendre le mécanisme de protection de l’oxyde de bore avec la réaction carbone-oxygène. Selon la littérature, l’oxyde de bore et l’acide borique peuvent agir de deux façons : soit en se fixant sur la surface de l’anode en bloquant les sites actifs du carbone ou encore en créant une couche vitreuse qui sert de barrière pour l’oxygène. Une étude cinétique a été établie et confirme que le nombre de collisions entre l’oxygène et les sites de carbone diminuent en présence du bore. La technique ToF-SIMS a également démontré que le bore se trouve sous forme d’oxyde sur la surface de l’anode, mais aussi sous forme de liaison carbone bore. Il s’agit donc d’une protection physique d’une part et une protection chimique en bloquant les sites actifs du carbone par les atomes de bore. La consommation de l’anode en carbone dans la cuve d’électrolyse est contrôlée par les impuretés, par le niveau de graphitisation mais également par le transport de masse à travers sa structure poreuse. La protection des particules de coke avec de l’oxyde de bore pourrait avoir un impact physique sur la porosité et la distribution de celle-ci. Des particules de coke (allant de 4 000 μm à 4 760 μm de diamètre) ont été imprégnées par de l’oxyde de bore afin de révéler la sélectivité des porosités. Les surfaces et les volumes spécifiques différentiels de ces trois tailles de particules gazéifiées à 3 pourcentages (0, 15 et 35%) déterminés par adsorption d’argon et par infiltration de mercure ont permis d’évaluer les contributions des gazéifications sous-critiques et sur-critiques sur la gazéification totale des anodes sous air à 525 °C. La détermination de la taille critique des pores (TC) pour le coke traité et non-traité et la mesure des contributions sous-critique et sur-critique ont permis de révéler que les pores ayant une taille supérieure à cette taille critique jouerait un rôle prépondérant dans la réactivité à l’air du coke. Dans cette thèse, une nouvelle méthode de protection des anodes par l’oxyde de bore a été développée. Ceci consiste à traiter les matières premières, avant la fabrication de l’anode. En utilisant une faible concentration d’oxyde de bore (de l’ordre de ppm) dans le but de limiter le niveau d’impureté dans l’aluminium produit. Les résultats montrent que la réactivité à l’air de l’anode diminue de 15%, le charbonnaille de 90% et le dégagement gazeux (CO2 et CO) de 30%. L'influence de chacun des paramètres (température, concentration, etc.) sur la protection de l’anode a également été optimisée. / Aluminum electrolysis is a process that consumes energy and resources (raw materials, qualified personnel, time, etc.). Several research projects are underway around the world to improve the efficiency of the aluminum manufacturing process, to reduce toxic gas emissions (CO2, CO, CF4, C2F6 ...) and to reduce production costs. One of the current problems of alumina electrolysis is the excessive consumption of carbon anodes. Indeed, these anodes, when they are heated at high temperatures, are attacked by ambient air between 400 and 600 °C, and by the CO2 at 960 °C which results in an over-consumption of carbon, thereby reducing the manufacturing capacity of metallic aluminum per kg of carbon consumed. Currently, the average lifetime of an anode is between 20 and 30 days. The objective of this project is to reduce the reaction rate of anode oxidation under ambient air. Different methods have been developed to obtain an effective and economical protection which would reduce the over-consumption of the carbon anode against the phenomenon of air oxidation. Since boron oxide is known as an inhibitor of carbon/oxygen reaction, several attempts have been made to make a coating on the anode, confirming the inhibitory effect of boron oxide on this reaction, thus allowing protection of the carbon anodes. The influence of each of the parameters (temperature, concentration, duration of impregnation in the solution, etc.) were studied, as well. X-ray tomography showed that the anode is mainly attacked on the surface and that the boron oxide coating creates a physical barrier preventing access of oxygen to the anode. Further studies have been carried out to understand the inhibitor mechanism of boron oxide on carbon-oxygen reaction. According to the literature, boron oxide and boric acid can act in two ways: either by fixing on the anode surface resulting in blocking the active carbon sites or by creating a vitreous layer which serves as a physical barrier to oxygen. A kinetic study has been established which confirms that the number of interactions between oxygen and carbon sites decreases in the presence of boron. ToF-SIMS has revealed that boron is present as an oxide on the anode surface and also in the form of carbon-boron bond (BC-). Therefore, this acts like a chemical protection while boron atoms block the carbon active sites, preventing oxidation. The consumption of the carbon anode in the electrolysis cells is controlled by the impurities and the graphitization level as well as the mass transport through its porous structure. The impregnation of coke particle could have an effect on the porosity and its distribution. Coke particles (from 4000 μm to 4 760 μm in diameter) was impregnated with boron oxide in order to reveal its effect on the porosity. The specific surface area and the volumes of 3 conversion rates of particles (at 0, 15 and 35%) were determined by argon adsorption and mercury infiltration in order to evaluate the contributions of subcritical gasification on the total gasification of the anodes under air at 525 °C. To determine the critical pore size (TC) for the treated and untreated coke, the measurement of internal and external contributions of pores was used. It was revealed that the pore sizes of 0.1-10 μm and larger were the most active pores for the gasification under air. In addition, the volume of only very small pores (0.0004-0.001 μm) was slightly decreased by boron impregnation. However, the contribution of the size range of these small pores to anode gasification is negligible. In this thesis, a new method for the protection of anodes by boron oxide has been developed. This involves treating the raw materials before anode is formed by using a low concentration of boron oxide (in ppm) in order to limit the level of impurities contained in the produced metal. The results performed with standard equipment showed that the air reactivity of the anode decreased by 15%, the dusting by 90% and CO2/CO loss by 30%. The electrical resistivity of the anode was not affected by boron oxide at this low level. The influence of each of the parameters (temperature, concentration, etc.) on anode protection was optimized, as well.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/29953
Date06 June 2018
CreatorsIshak, Ramzi
ContributorsLaroche, Gaétan, Darvishi Alamdari, Houshang
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageEnglish
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 124 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0035 seconds