Return to search

Development of a CFD Boundary Condition to Simulate a Perforated Surface

In aircraft with jet propulsion engine intakes at supersonic speed, strong pressure waves referred to as shockwaves occur, which may interact with any present boundary layers along the intake surface. The adverse pressure gradients associated with Shock Wave-Boundary Layer Interaction (SWBLI) may cause boundary layer flow separation, which can result in disturbances of the flow that can be harmful to the device or decrease engine performance. A common way in dealing with the adverse effects of SWBLI is through removal of low-momentum flow in the boundary layer, a process referred to as boundary layer bleed. In the process of bleed, the boundary layer is subjected to a pressure difference promoting flow out of the system, through a porous surface, and into a plenum. The porous surfaces used in the mass flow removal process contain orifices in small scales. Thus, in Computational Fluid Dynamics (CFD), creating a mesh resolving both the orifice scales and the bulk flow is a cumbersome task, and the computational cost becomes substantially increased. To this end, several boundary conditions which effectively model the large-scale effects of bleed have been developed. The aim of this study is to implement the Boundary Condition (BC) developed by John W. Slater into M-EDGE, the in-house compressible CFD-solver of SAAB Aeronautics. The bleed boundary condition model is based on a dimensionless surface sonic flow coefficient, which is derived from empirical wind-tunnel measurements of the bleed mass flow. In previous work, the Slater bleed BC has been shown to correlate well with wind-tunnel data. Furthermore, a simple transpiration law formulated by Reynald Bur was implemented in order get familiarized with the M-EDGE Fortran source code. However, this model is expected to yield unsatisfactory results, as reported in previous work in the field. The implemented Slater BC is tested on two different two-dimensional flow cases; flow over a flat plate without SWBLI, and flow including a shock wave generator creating SWBLI. In the flat plate case, simulations were run at Mach numbers 1.27, 1.58, 1.98 and 2.46 over a 6.85cm plate of 19% porosity. In the SWBLI-case, only flow at Mach 2.46 was considered, with a 9.53cm plate of 21% porosity. The Reynolds number range used throughout was 1.39−1.76·10^7/m. Simulations were run at different bleed rates over a structured grid using steady state RANS with the Spalart-Allmaras one-equation turbulence model. The boundary condition performance was assessed by its ability to recreate the sonic flow coefficients on which it is based. Further, the shape of downstream pitot pressure profiles are compared with experimental data. Results from the studies indicate that the implementation manages to recreate the data for the sonic flow coefficient with small error margins. The implementation can be used to simulate porous plates of different dimensions and porosities, even though the bleed model is based on empirical mass flow measurements of a 6.85cmplate of 19% porosity. The implementation is able to predict global bleed effects in the flow field, as indicated by comparisons of pitot pressure profiles at various downstream reference planes, despite differences in reference boundary layer intake profiles. Further, the overall flow field was compared visually with other simulation-studies, indicating that the global Mach distributions of the geometries were in accordance with the reference data. However, pitot profiles should be further studied with better matched intake boundary layer profiles. The main limitation of the boundary condition is that it relies on the wind-tunnel data of the surface sonic flow coefficients for specific bleed plate configurations. Furthermore, the implementation has only been verified to work within specific Mach number range of the underlying empirical measurements. In future work, the generality of the model could be increased by extending the data to other configurations and Mach numbers by conducting new experiments or using other published empirical data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-185418
Date January 2021
CreatorsKiflemariam, Medet
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds