Return to search

Magnetit-Nanokomposite als Funktionspartikeln für die Bioseparation / Magnetite nanocomposites as functional particles for bioseparation applications

Die vorliegende Arbeit beschäftigt sich mit der Herstellung von funktionellen Magnetit-Nanokompositen durch Sprühtrocknung für die Anwendung in der Bioseparation. Dabei liegen die Schwerpunkte auf der Anwendung von Polyelektrolyten als Ionenaustauscher sowie auf der Nachhaltigkeit des Herstellungsprozesses.
Basierend auf einem existierenden Herstellungsprozess wurde die Aufgabenstellung konkretisiert. Es wurden Möglichkeiten zur nachhaltigen Prozessgestaltung der Synthese von kationischen bzw. anionischen magnetischen Funktionspartikeln zur Proteinabtrennung vorgestellt. Als magnetische Komponente wurde Magnetit verwendet. Aufgrund seines pseudo-amphiphilen Charakters und seiner besonderen Eigenschaften in Bezug auf die Stabilisierung von Magnetit-Kolloiden wurde Polyvinylbutyral (Mowital B 30T) als Matrixpolymer bei der Sprühtrocknung benutzt. Für die nachhaltige Prozessgestaltung wurden Isopropanol und Tetrahydrofuran als Dichlormethan-Ersatz bei der Sprühtrocknung verwendet.
Bei der Synthese kationischer Magnetic Beads wurden verzweigtes Polyethylenimin und lineares Poly(Allyamin) als Anionenaustauscher verwendet. Beide Polykationen sind schwache Polyelektrolyte mit Aminogruppen. Für die Verarbeitung der Polykationen als funktionelle Liganden in magnetischen Funktionspartikeln wurde zwei Herstellungsmethoden vorgestellt: eine Synthese ohne Oberflächenmodifizierung, wobei die mechanische und chemische Stabilität der Funktionspartikeln einzig von der chemischen Struktur der eingesetzten Materialien bzw. vom Matrixpolymer abhängt, und eine Synthese mit Oberflächenmodifizierung. Die Synthese mit Oberflächenmodifizierung ist gekennzeichnet durch die kovalente Bindung von Polyethylenimin bzw. Poly(Allyamin) an der Oberfläche der Funktionspartikeln (Polyvinylbutyral). Dafür wurde 1,1’-Carbonyldiimidazol als „zero length“-Crosslinker benutzt. Die nach beiden Methoden hergestellten Funktionspartikeln wurden charakterisiert, um ihre technische Eignung beurteilen zu können. Für die Charakterisierung der sorptiven Eigenschaften wurde unter anderem der Bowman-Birk Inhibitor (BBI) verwendet. Das Protein ist ein Sojaprodukt und für seine krebsvorbeugende Wirkung bekannt. Um die Selektivität der Abtrennung zu untersuchen, wurden BBI-Produkte mit unterschiedlichen Reinheitsgraden benutzt.
Durch die zwei vorgestellten Methoden konnten kationische magnetische Funktionspartikeln erfolgreich hergestellt werden. Alle Funktionspartikeln sind superparamagnetisch, und der Medianwert ihrer Partikelgrößenverteilung liegt im einstelligen Mikrometerbereich. Aufgrund eines höheren Polykationanteils ist die Bindungskapazität der Funktionspartikeln ohne Oberflächenmodifizierung um den Faktor 2,4 größer als die BBI-Bindungskapazität der Funktionspartikeln mit Oberflächenmodifizierung (Qmax=322 mg/g). Das Fehlen eine feste Anbindung des funktionellen Liganden an den Funktionspartikeln ohne Oberflächenmodifizierung verleiht jedoch diesen eine sehr schlechte chemische Stabilität in Lösungen. Es wurde auch gezeigt, dass oberflächenmodifizierte Funktionspartikeln mit ähnlichen Eigenschaften durch den Einsatz von Dichlormethan bzw. Tetrahydrofuran als Lösungsmittelersatz während der Sprühtrocknung hergestellt werden können. Durch den Einsatz von mit Poly(allylamin) oberflächenmodifizierten Funktionspartikeln konnte BBI von technischen Sojamolken unterschiedlicher Reinheitsgrade erfolgreich abgetrennt werden.
Anionische Magnetic Beads wurden mit Kationenaustauscherharz als funktionellem Ligand hergestellt. Dabei wurde Isopropanol als organisches Lösungsmittel während der Sprühtrocknung verwendet. Die Synthese wurde analog zur Synthese der kationischen Magnetic Beads ohne Oberflächenmodifizierung durchgeführt. Es wurde auch hier gezeigt, dass anionische magnetische Funktionspartikeln mit guten sorptiven Eigenschaften durch den Einsatz von Isopropanol als organisches Lösungsmittel hergestellt werden können. Die anionischen Funktionspartikeln besitzen im Vergleich zu Literaturwerten höhere Bindungskapazitäten (bis 280 mg/g; ermittelt mit Lysozym).
Im letzten Kapitel wird der kritische Prozessschritt des Lösungsmittelaustausches behandelt. Nach dem Lösungsmittelaustausch sollten die Magnetitnanopartikeln in der organischen Phase stabil sein. Dies ermöglicht sowohl eine homogene Verteilung der Nanopartikeln in der Matrix als auch deren bessere Verkapselung während der Sprühtrocknung. Es wurde festgestellt, dass sich eine vollständige Abtrennung von Dichlormethan durch die angewendete Destillationsmethode nicht erreichen lässt. Anhand von zwei Modellsystemen — Rizinolsäure- und Ölsäure-beschichteten Magnetitnanopartikeln — und Lösungsmittelgemischen wurde die Stabilität von sterisch stabilisierten Magnetitpartikeln in binären Lösungsmittelgemischen untersucht. Der Fokus bei dieser Untersuchung lag auf der Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einer möglichst Dichlormethan- bzw. Isooktan-freien organischen Phase. Als zweites Lösungsmittel (als Lösungsmittelersatz betrachtet) wurden neben Tetrahydrofuran und Isopropanol technisch verbreitete Lösungsmittel wie Isooktan und 1-Butanol eingesetzt.
Die Untersuchungsergebnisse zeigen, dass die Anwendung der technischen Rizinolsäure bzw. Ölsäure einen zusätzlichen Einfluss auf die Stabilität der Magnetitpartikeln hat, da diese aus anderen Fettsäuren mit unterschiedlichen chemischen Strukturen bestehen. Die Diskrepanz zwischen der berechneten HANSEN-Distanzen und der Stabilität der Magnetitnanopartikeln mit reinen Fettsäuren lässt vermutet, dass die Zusammensetzung der Lösungsmittelgemische an der fest/flüssig-Grenzfläche anders ist als im freien Volumen. Ein Modell zur Beschreibung der Stabilität der Nanopartikeln, das auf einer Anreicherung des Ausgangslösungsmittels an der Grenzfläche basiert, wurde postuliert. Solange die Diffusion des zweiten Lösungsmittels in die Adsorptionsschicht nicht ausreichend genug ist, um die Löslichkeit der Fettsäureketten entscheidend zu reduzieren und somit einen Abfall der Abstoßungskräfte zwischen der Partikeln hervorzurufen, bleiben alle beschichteten Magnetitnanopartikeln stabil im Lösungsmittelgemisch. Dies ist der Fall für die mit der reinen Rizinolsäure beschichteten Magnetitnanopartikeln in allen verwendeten Lösungsmittelgemischen mit 0,5 Vol. % DCM in der kontinuierlichen Phase.
Durch die vorgestellten Herstellungsmethoden wurde gezeigt, dass magnetische Funktionspartikeln sowohl mit festen partikelförmigen Ionenaustauschern als auch mit flüssigen schwachen Polyelektrolyten erfolgreich synthetisiert werden können. Eine nachhaltige Prozessgestaltung durch die Reduzierung der Dichlormethanmenge im Sprühtrocknungsprozess ist auch möglich. Für eine erfolgreiche industrielle Anwendung der Funktionspartikeln müssen aber ihre chemischen sowie mechanischen Eigenschaften deutlich verbessert werden. Dies könnte z.B. durch die Verwendung eines anderen Matrixpolymers oder durch die Entfernung von nicht gebundenen Bestandteilen durch gezielte Waschung der Funktionspartikeln erfolgen. Die Bindungskapazität sowie die Selektivität der oberflächenmodifizierten Funktionspartikeln sollte ebenfalls verbessert werden. Dafür wurde einen Ansatz durch die Quaternisierung der Aminogruppen präsentiert.
Schließlich würde die Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einphasigen reinen Lösungsmitteln nähere Erkenntnisse über das postulierte Modell der Anreicherung von Dichlormethan in der Adsorptionsschicht erbringen. Dabei könnte die Dichlormethanmenge durch mehrstufige Destillation bzw. Rektifikation beim Lösungsmittelaustausch entfernt werden. Eine vollständige Untersuchung dieses Effekts würde zusätzlich eine Antwort auf zahlreiche Fragestellungen der Kolloidchemie in Bezug auf das Stabilitätsverhalten von Pigmentdispersionen (Lacke) oder von beschichteten Nanopartikeln in Polymerlösungen erbringen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:105-qucosa-156369
Date09 December 2014
CreatorsTchanque Kemtchou, Valéry
ContributorsTechnische Universität Bergakademie Freiberg, Maschinenbau, Verfahrens- und Energietechnik, Prof. Dr.-Ing. Urs Alexander Peuker, Prof. Dr.-Ing. Urs Alexander Peuker, Prof. Dr.-Ing. Matthias Franzreb
PublisherTechnische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola"
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0026 seconds