Return to search

Neuronal UV-Initiated Apoptosis is Prevented By 5-Bromo-2’-Deoxyuridine (BrdU) Or A Deficiency in Cockayne Syndrome B Or Xeroderma Pigmentosum A

This project addressed mechanisms of the neuronal DNA damage response after treatment with the model DNA damaging agent ultraviolet light (UV). The thymidine analogue, 5-bromo-2’-deoxyuridine (BrdU) protected against UV-initiated neuronal apoptosis in a concentration-dependent manner (p<0.001). BrdU did not protect proliferating mouse embryonic fibroblasts from UV-induced apoptosis. We assessed whether the mechanism of BrdU neuroprotection was through a modification in the neuronal DNA damage response. BrdU neuroprotection was independent of BrdU incorporation into DNA, neuronal DNA repair, p53 activation or cell cycle re-entry, a neuronal DNA damage response. Neurons deficient in Cockayne Syndrome B (CSB) or Xeroderma Pigmentosum A (XPA) were paradoxically resistant to UV-initiated apoptosis. Therefore, CSB and XPA play essential roles in the neuronal DNA damage response.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/42406
Date15 November 2013
CreatorsRajakulendran, Nishani
ContributorsLaposa, Rebecca
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds