• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of TRF1 Interaction with Cajal Bodies and Characterization of the Effect of Cancer-Associated CSB Single Nucleotide Polymorphisms on CSB UV Sensitivity

Gurecki, Michael J 11 1900 (has links)
Telomeres are the ends of linear chromosomes which are protected by a multi-protein complex called shelterin. The proper maintenance of telomeres involves strict control over the length of the TTAGGG telomeric repeat sequences. In part, this is achieved through the action of the shelterin complex component TRF1. TRF1 binds to duplex telomere DNA and acts as a suppressor of telomerase-dependent telomere elongation, however the exact mechanism by which it achieves this is currently unknown. Recent observations with a phospho-specific TRF1 antibody indicate that phosphorylated (pT371)TRF1 localizes at Cajal bodies. Cajal bodies are subnuclear organelles with myriad functions, one of which is to recruit the subunits of the telomerase holoenzyme for assembly and the subsequent targeting of the enzyme to telomeres for elongation. The results presented here demonstrate that this association of phosphorylated (pT371)TRF1 to Cajal bodies is highly specific, requiring its DNA binding capability, and occurring only in Cajal bodies which are not actively involved with telomere extension. While the function of this association has not been elucidated, the data are suggestive of a telomerase-related role being played by phosphorylated (pT371)TRF1 at Cajal bodies, possibly related to its function in suppressing telomere elongation. CSB is a multifunction protein which is implicated in transcription-coupled repair (TCR), base excision repair (BER), and control of transcription. Certain mutations and truncations of CSB are known to cause Cockayne syndrome (CS) in humans, an autosomal recessive progeria with devastating consequences. Unlike other progeria, CS patients do not display increased cancer incidence. Despite this fact, CSB is upregulated and in many cancers. In these cells, removal of CSB leads to apoptosis and increased sensitivity to chemotherapeutic drugs which suggests a dependency on CSB. The CSB of some non-CS cancer patients has also been found to be mutated at several recurring SNPs through the CSB gene. Preliminary examination of some of these SNPs suggests that they may invoke a change in the efficiency of TCR repair of UV-induced DNA damage. The results presented here demonstrate that, for the SNPs examined, there is no significant change in the repair of UV damage as assessed by colony survival assays post UV-treatment. While this may rule out an effect on TCR by these cancer-associated SNPs, it is possible that they may have an effect on CSB’s involvement in other vital cellular processes. / Thesis / Master of Science (MSc)
2

Prote?mica comparativa de linhagens celulares humanas expostas a estresse oxidativo induzido por riboflavina fotossensibilizada

Timoteo, Ana Rafaela de Souza 28 September 2011 (has links)
Made available in DSpace on 2014-12-17T14:10:25Z (GMT). No. of bitstreams: 1 AnaRST_DISSERT.pdf: 1422698 bytes, checksum: e73998b03faa562a4c08ff6ab012f0cc (MD5) Previous issue date: 2011-09-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation / Esp?cies reativas de oxig?nio (EROs) s?o geradas, continuamente, podendo ser provenientes do metabolismo celular ou induzidas por fatores ex?genos, al?m disso, apresentam a capacidade de danificar mol?culas, como DNA e prote?nas. BER ? considerada a principal via de reparo de danos oxidativos ao DNA, entretanto, diversos estudos tem demonstrado a import?ncia da participa??o de prote?nas de outras vias na corre??o destas les?es. A defici?ncia de algumas enzimas da via NER, como CSB e XPC, que atuam na etapa de reconhecimento da les?o nas duas subvias deste sistema, influencia na efic?cia do reparo de danos oxidativos. Entretanto, os mecanismos atrav?s dos quais, c?lulas deficientes nestas enzimas respondem ao estresse oxidativo e suas conseq??ncias ainda necessitam ser mais bem esclarecidos. Desta forma, o objetivo deste trabalho foi realizar uma an?lise prote?mica de linhagens celulares proficiente e deficiente em NER, expostas ao estresse oxidativo, de modo a identificar prote?nas envolvidas, diretamente ou n?o, na resposta ao estresse oxidativo e reparo de DNA. Para isto, tr?s linhagens de fibroblastos humanos, MRC5-SV, CS1AN (deficiente em CSB) e XP4PA (deficiente em XPC), foram tratadas com riboflavina fotosenssibilizada e, em seguida, foi realizada a identifica??o das prote?nas diferencialmente expressas atrav?s do seq?enciamento de pept?deos por espectrometria de massas. A partir dos resultados, observou-se que a linhagem MRC5-SV apresenta aumento de express?o na maioria das prote?nas envolvidas com a defesa celular, sendo uma resposta esperada para uma linhagem celular normal submetida a estresse. A linhagem CS1AN demonstrou uma resposta desarticulada, n?o sendo poss?vel estabelecer muitas intera??es entre as prote?nas identificadas, podendo ser uma explica??o para sua sensibilidade a tratamentos com riboflavina e outros agentes oxidantes e aumento da morte celular provavelmente por indu??o das vias pr?apopt?ticas. J? linhagem XP4PA apresentou maior express?o de prote?nas bloqueadoras da apoptose, assim como, houve a inibi??o ou redu??o da express?o de outras envolvidas com a ativa??o deste processo, sugerindo a ativa??o de um circuito anti-apopt?tico nesta linhagem, o que pode ajudar a explicar a alta susceptibilidade de indiv?duos XPC a desenvolvimento de c?nceres. Estes resultados tamb?m contribuir?o para o esclarecimento dos mecanismos de atua??o de NER em danos oxidativos e para a compreens?o de vias importantes na correla??o do estresse oxidativo, reparo e forma??o de tumores mal?gnos
3

Evaluating the Relative Effectiveness of Two Supplemental Foods for the Treatment of Moderate Acute Malnutrition in Children 6 to 60 Months of Age in Southern Ethiopia

Karakochuk, Crystal D. 06 January 2011 (has links)
The purpose of this cluster-randomized equivalence trial was to investigate the effectiveness of two supplemental foods in children with moderate malnutrition by comparing: (i) time to recovery by survival analysis, and (ii) recovery rates (after 16 weeks of treatment). A total of 2,600 children 6-60 months of age were randomized by cluster (district) to receive 16 weeks of conventional (Corn-Soya Blended flour, CSB) or intervention (Ready-to-Use Supplemental Food, RUSF) foods. Overall, time to recovery from malnutrition (mean 74 days) and recovery rates (mean 76%) were equivalent with both foods. The time to recovery outcomes were equivalent, independent of location, whereas the recovery rate in children receiving CSB was significantly higher in the more food insecure southern region. Intra-household food sharing was significantly higher in the CSB group compared to RUSF. Overall, the response to the two different supplemental foods was equivalent for the treatment of moderately malnourished children in Ethiopia.
4

Evaluating the Relative Effectiveness of Two Supplemental Foods for the Treatment of Moderate Acute Malnutrition in Children 6 to 60 Months of Age in Southern Ethiopia

Karakochuk, Crystal D. 06 January 2011 (has links)
The purpose of this cluster-randomized equivalence trial was to investigate the effectiveness of two supplemental foods in children with moderate malnutrition by comparing: (i) time to recovery by survival analysis, and (ii) recovery rates (after 16 weeks of treatment). A total of 2,600 children 6-60 months of age were randomized by cluster (district) to receive 16 weeks of conventional (Corn-Soya Blended flour, CSB) or intervention (Ready-to-Use Supplemental Food, RUSF) foods. Overall, time to recovery from malnutrition (mean 74 days) and recovery rates (mean 76%) were equivalent with both foods. The time to recovery outcomes were equivalent, independent of location, whereas the recovery rate in children receiving CSB was significantly higher in the more food insecure southern region. Intra-household food sharing was significantly higher in the CSB group compared to RUSF. Overall, the response to the two different supplemental foods was equivalent for the treatment of moderately malnourished children in Ethiopia.
5

Neuronal UV-Initiated Apoptosis is Prevented By 5-Bromo-2’-Deoxyuridine (BrdU) Or A Deficiency in Cockayne Syndrome B Or Xeroderma Pigmentosum A

Rajakulendran, Nishani 15 November 2013 (has links)
This project addressed mechanisms of the neuronal DNA damage response after treatment with the model DNA damaging agent ultraviolet light (UV). The thymidine analogue, 5-bromo-2’-deoxyuridine (BrdU) protected against UV-initiated neuronal apoptosis in a concentration-dependent manner (p<0.001). BrdU did not protect proliferating mouse embryonic fibroblasts from UV-induced apoptosis. We assessed whether the mechanism of BrdU neuroprotection was through a modification in the neuronal DNA damage response. BrdU neuroprotection was independent of BrdU incorporation into DNA, neuronal DNA repair, p53 activation or cell cycle re-entry, a neuronal DNA damage response. Neurons deficient in Cockayne Syndrome B (CSB) or Xeroderma Pigmentosum A (XPA) were paradoxically resistant to UV-initiated apoptosis. Therefore, CSB and XPA play essential roles in the neuronal DNA damage response.
6

Neuronal UV-Initiated Apoptosis is Prevented By 5-Bromo-2’-Deoxyuridine (BrdU) Or A Deficiency in Cockayne Syndrome B Or Xeroderma Pigmentosum A

Rajakulendran, Nishani 15 November 2013 (has links)
This project addressed mechanisms of the neuronal DNA damage response after treatment with the model DNA damaging agent ultraviolet light (UV). The thymidine analogue, 5-bromo-2’-deoxyuridine (BrdU) protected against UV-initiated neuronal apoptosis in a concentration-dependent manner (p<0.001). BrdU did not protect proliferating mouse embryonic fibroblasts from UV-induced apoptosis. We assessed whether the mechanism of BrdU neuroprotection was through a modification in the neuronal DNA damage response. BrdU neuroprotection was independent of BrdU incorporation into DNA, neuronal DNA repair, p53 activation or cell cycle re-entry, a neuronal DNA damage response. Neurons deficient in Cockayne Syndrome B (CSB) or Xeroderma Pigmentosum A (XPA) were paradoxically resistant to UV-initiated apoptosis. Therefore, CSB and XPA play essential roles in the neuronal DNA damage response.
7

Influência do reparo por excisão de nucleotídeos na citotoxicidade do antineoplásico mitoxantrona

Rocha, Jaqueline Cesar January 2016 (has links)
A mitoxantrona (MXT) é um antineoplásico utilizado no tratamento de tumores como leucemias, linfoma não-Hodgkin e câncer de mama e próstata. Ela é classificada como uma antracenodiona, sendo um análogo estrutural das antraciclinas, como a doxorrubicina (DOX), cujo mecanismo de ação é baseado na inibição da enzima topoisomerase II (Topo II), através da formação dos complexos estabilizados Topo II-DNA. As antraciclinas e a MXT também são capazes de formar lesões do tipo adutos, pontes intercadeias de DNA (interstrand crosslink – ICL) e espécies reativas de oxigênio (ERO). Estudos têm demonstrado que a via de reparo por excisão de nucleotídeos (Nucleotide Excision Repair – NER) está envolvido na remoção de lesões no DNA induzidas pela DOX. Considerando as similaridades estruturais e de mecanismo de ação entre a MXT e a DOX, o objetivo deste trabalho foi avaliar a influência da via NER na citotoxicidade da MXT, a fim de elucidar possíveis mecanismos envolvidos na resistência tumoral a esta droga. Os resultados encontrados demonstraram que células deficientes na via NER (XPA, XPD, XPC e CSB) apresentam elevada sensibilidade a MXT comparadas a células proficientes em reparo (MRC5). Apesar disso, células CSB (deficientes na subvia associada à transcrição - Transcription coupled – TCR-NER) são mais sensíveis a MXT que células XPC (deficientes na subvia de reparo global do genoma – Global genome repair – GGR-NER) e também apresentam diferenças no perfil de ciclo celular, síntese de DNA e formação dos complexos Topo II-DNA após tratamento com MXT. Células XPC, da mesma forma que as células proficientes MRC5 apresentam parada de ciclo celular em G2/M, recuperação da síntese de DNA e sinal semelhante para formação dos complexos Topo II-DNA, enquanto células CSB apresentam acúmulo de células na fase S, diminuição na síntese de DNA e sinal mais intenso para formação dos complexos Topo II-DNA. Além disso, a complementação das células CSB com a proteína CSB recuperou a resistência das células a MXT e também diminuiu a intensidade do sinal dos complexos Topo II-DNA. Estes resultados indicaram que a via NER está envolvida na resistência das células ao tratamento com MXT e que a proteína CSB ou a subvia TCR-NER tem um papel chave no processamento dos complexos Topo II-DNA. / Mitoxantrone (MXT) is an antineoplastic drug used in treatment of tumors like leukemia, non-Hodgkin lymphoma and breast and prostate cancer. It is classified as an anthracenedione, being a structural analogue of anthracyclines, like doxorubicin (DOX), which action mechanism is based on topoisomerase II (Topo II) inhibition and formation of stabilized Topo II-DNA complexes. Anthracyclines and MXT also can form lesions like DNA adducts, interstrand crosslinks (ICL) and reactive oxygen species (ROS). Studies have shown that nucleotide excision repair (NER) pathway is involved in removal of lesions induced by DOX. Due to structural and action mechanism similarities between MXT and DOX, the aim of this work was to evaluate the influence of NER pathway in cytotoxicity of MXT, in order to elucidate possible mechanisms involved in tumor resistance to this drug. The results demonstrated that NER-deficient cells (XPA, XPD, XPC and CSB) show high sensitivity to MXT compared to repair proficient cells (MRC5). However, CSB cells (deficient in Transcription coupled repair – TCR) were more sensitive to MXT than XPC cells (deficient in Global genome repair – GGR) and also showed differences in cell cycle, DNA synthesis and Topo II-DNA complexes formation upon MXT treatment. XPC cells, in the same way as MRC5 proficient cells present G2/M cell cycle arrest, DNA synthesis recovery and similar signal for Topo II-DNA complexes formation, while CSB cells present accumulation of cells in S phase, reduced DNA synthesis and a more intense signal for Topo II-DNA complexes formation. Moreover, CSB cells complementation recovery MXT-resistance and also diminished Topo II-DNA complexes signal intensity. These results indicate that NER pathway is involved in cells resistance to MXT treatment and that CSB protein or TCR-NER sub pathway has a key role in processing of MXT induced Topo II-DNA complexes.
8

Influência do reparo por excisão de nucleotídeos na citotoxicidade do antineoplásico mitoxantrona

Rocha, Jaqueline Cesar January 2016 (has links)
A mitoxantrona (MXT) é um antineoplásico utilizado no tratamento de tumores como leucemias, linfoma não-Hodgkin e câncer de mama e próstata. Ela é classificada como uma antracenodiona, sendo um análogo estrutural das antraciclinas, como a doxorrubicina (DOX), cujo mecanismo de ação é baseado na inibição da enzima topoisomerase II (Topo II), através da formação dos complexos estabilizados Topo II-DNA. As antraciclinas e a MXT também são capazes de formar lesões do tipo adutos, pontes intercadeias de DNA (interstrand crosslink – ICL) e espécies reativas de oxigênio (ERO). Estudos têm demonstrado que a via de reparo por excisão de nucleotídeos (Nucleotide Excision Repair – NER) está envolvido na remoção de lesões no DNA induzidas pela DOX. Considerando as similaridades estruturais e de mecanismo de ação entre a MXT e a DOX, o objetivo deste trabalho foi avaliar a influência da via NER na citotoxicidade da MXT, a fim de elucidar possíveis mecanismos envolvidos na resistência tumoral a esta droga. Os resultados encontrados demonstraram que células deficientes na via NER (XPA, XPD, XPC e CSB) apresentam elevada sensibilidade a MXT comparadas a células proficientes em reparo (MRC5). Apesar disso, células CSB (deficientes na subvia associada à transcrição - Transcription coupled – TCR-NER) são mais sensíveis a MXT que células XPC (deficientes na subvia de reparo global do genoma – Global genome repair – GGR-NER) e também apresentam diferenças no perfil de ciclo celular, síntese de DNA e formação dos complexos Topo II-DNA após tratamento com MXT. Células XPC, da mesma forma que as células proficientes MRC5 apresentam parada de ciclo celular em G2/M, recuperação da síntese de DNA e sinal semelhante para formação dos complexos Topo II-DNA, enquanto células CSB apresentam acúmulo de células na fase S, diminuição na síntese de DNA e sinal mais intenso para formação dos complexos Topo II-DNA. Além disso, a complementação das células CSB com a proteína CSB recuperou a resistência das células a MXT e também diminuiu a intensidade do sinal dos complexos Topo II-DNA. Estes resultados indicaram que a via NER está envolvida na resistência das células ao tratamento com MXT e que a proteína CSB ou a subvia TCR-NER tem um papel chave no processamento dos complexos Topo II-DNA. / Mitoxantrone (MXT) is an antineoplastic drug used in treatment of tumors like leukemia, non-Hodgkin lymphoma and breast and prostate cancer. It is classified as an anthracenedione, being a structural analogue of anthracyclines, like doxorubicin (DOX), which action mechanism is based on topoisomerase II (Topo II) inhibition and formation of stabilized Topo II-DNA complexes. Anthracyclines and MXT also can form lesions like DNA adducts, interstrand crosslinks (ICL) and reactive oxygen species (ROS). Studies have shown that nucleotide excision repair (NER) pathway is involved in removal of lesions induced by DOX. Due to structural and action mechanism similarities between MXT and DOX, the aim of this work was to evaluate the influence of NER pathway in cytotoxicity of MXT, in order to elucidate possible mechanisms involved in tumor resistance to this drug. The results demonstrated that NER-deficient cells (XPA, XPD, XPC and CSB) show high sensitivity to MXT compared to repair proficient cells (MRC5). However, CSB cells (deficient in Transcription coupled repair – TCR) were more sensitive to MXT than XPC cells (deficient in Global genome repair – GGR) and also showed differences in cell cycle, DNA synthesis and Topo II-DNA complexes formation upon MXT treatment. XPC cells, in the same way as MRC5 proficient cells present G2/M cell cycle arrest, DNA synthesis recovery and similar signal for Topo II-DNA complexes formation, while CSB cells present accumulation of cells in S phase, reduced DNA synthesis and a more intense signal for Topo II-DNA complexes formation. Moreover, CSB cells complementation recovery MXT-resistance and also diminished Topo II-DNA complexes signal intensity. These results indicate that NER pathway is involved in cells resistance to MXT treatment and that CSB protein or TCR-NER sub pathway has a key role in processing of MXT induced Topo II-DNA complexes.
9

Influência do reparo por excisão de nucleotídeos na citotoxicidade do antineoplásico mitoxantrona

Rocha, Jaqueline Cesar January 2016 (has links)
A mitoxantrona (MXT) é um antineoplásico utilizado no tratamento de tumores como leucemias, linfoma não-Hodgkin e câncer de mama e próstata. Ela é classificada como uma antracenodiona, sendo um análogo estrutural das antraciclinas, como a doxorrubicina (DOX), cujo mecanismo de ação é baseado na inibição da enzima topoisomerase II (Topo II), através da formação dos complexos estabilizados Topo II-DNA. As antraciclinas e a MXT também são capazes de formar lesões do tipo adutos, pontes intercadeias de DNA (interstrand crosslink – ICL) e espécies reativas de oxigênio (ERO). Estudos têm demonstrado que a via de reparo por excisão de nucleotídeos (Nucleotide Excision Repair – NER) está envolvido na remoção de lesões no DNA induzidas pela DOX. Considerando as similaridades estruturais e de mecanismo de ação entre a MXT e a DOX, o objetivo deste trabalho foi avaliar a influência da via NER na citotoxicidade da MXT, a fim de elucidar possíveis mecanismos envolvidos na resistência tumoral a esta droga. Os resultados encontrados demonstraram que células deficientes na via NER (XPA, XPD, XPC e CSB) apresentam elevada sensibilidade a MXT comparadas a células proficientes em reparo (MRC5). Apesar disso, células CSB (deficientes na subvia associada à transcrição - Transcription coupled – TCR-NER) são mais sensíveis a MXT que células XPC (deficientes na subvia de reparo global do genoma – Global genome repair – GGR-NER) e também apresentam diferenças no perfil de ciclo celular, síntese de DNA e formação dos complexos Topo II-DNA após tratamento com MXT. Células XPC, da mesma forma que as células proficientes MRC5 apresentam parada de ciclo celular em G2/M, recuperação da síntese de DNA e sinal semelhante para formação dos complexos Topo II-DNA, enquanto células CSB apresentam acúmulo de células na fase S, diminuição na síntese de DNA e sinal mais intenso para formação dos complexos Topo II-DNA. Além disso, a complementação das células CSB com a proteína CSB recuperou a resistência das células a MXT e também diminuiu a intensidade do sinal dos complexos Topo II-DNA. Estes resultados indicaram que a via NER está envolvida na resistência das células ao tratamento com MXT e que a proteína CSB ou a subvia TCR-NER tem um papel chave no processamento dos complexos Topo II-DNA. / Mitoxantrone (MXT) is an antineoplastic drug used in treatment of tumors like leukemia, non-Hodgkin lymphoma and breast and prostate cancer. It is classified as an anthracenedione, being a structural analogue of anthracyclines, like doxorubicin (DOX), which action mechanism is based on topoisomerase II (Topo II) inhibition and formation of stabilized Topo II-DNA complexes. Anthracyclines and MXT also can form lesions like DNA adducts, interstrand crosslinks (ICL) and reactive oxygen species (ROS). Studies have shown that nucleotide excision repair (NER) pathway is involved in removal of lesions induced by DOX. Due to structural and action mechanism similarities between MXT and DOX, the aim of this work was to evaluate the influence of NER pathway in cytotoxicity of MXT, in order to elucidate possible mechanisms involved in tumor resistance to this drug. The results demonstrated that NER-deficient cells (XPA, XPD, XPC and CSB) show high sensitivity to MXT compared to repair proficient cells (MRC5). However, CSB cells (deficient in Transcription coupled repair – TCR) were more sensitive to MXT than XPC cells (deficient in Global genome repair – GGR) and also showed differences in cell cycle, DNA synthesis and Topo II-DNA complexes formation upon MXT treatment. XPC cells, in the same way as MRC5 proficient cells present G2/M cell cycle arrest, DNA synthesis recovery and similar signal for Topo II-DNA complexes formation, while CSB cells present accumulation of cells in S phase, reduced DNA synthesis and a more intense signal for Topo II-DNA complexes formation. Moreover, CSB cells complementation recovery MXT-resistance and also diminished Topo II-DNA complexes signal intensity. These results indicate that NER pathway is involved in cells resistance to MXT treatment and that CSB protein or TCR-NER sub pathway has a key role in processing of MXT induced Topo II-DNA complexes.
10

Functional analysis of CSB in telomere maintenance and DNA double-strand break repair

Batenburg, Nicole 11 1900 (has links)
Cockayne syndrome (CS) is a rare, segmental premature aging disorder in which the majority of cases are caused by mutations in the Cockayne syndrome group B protein (CSB). CSB is a multifunctional protein implicated in DNA repair, transcription and chromatin remodeling. The results presented here demonstrate that CSB plays an important role in telomere maintenance and DSB repair. We find that CS cells accumulate telomere doublets, have increased telomere-bound TRF1, decreased TERRA levels and a defect in telomerase-dependent telomere lengthening. These results imply that CS patients may be defective in telomere maintenance. We also uncover a novel and important role of CSB in DNA DSB repair. We show that CSB facilitates HR and supresses NHEJ during S and G2 phase. We find that CSB interacts with RIF1 and is recruited by RIF1 to DSBs in S phase. At DSBs, CSB remodels the chromatin extensively, which in turn limits RIF1 recruitment and promotes BRCA1 accumulation. The chromatin remodeling activity of CSB requires not only damage-induced phosphorylation on S10 by ATM but also cell cycle-dependent phosphorylation of S158 by cyclin A-CDK2. Both modifications are needed for the intramolecular interaction of CSB N-terminal domain with its ATPase domain. This intramolecular interaction has previously been reported to regulate the ATPase activity of CSB. Taken together, these results suggest that ATM and CDK2 control of CSB to promote chromatin remodeling, which in turn inhibits RIF1 in DNA DSB repair pathway choice. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0271 seconds