• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 28
  • 13
  • 11
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implication de l'ADN polymérase eta dans la réponse aux dommages de l'ADN dans des cellules déficientes en réparation par excision de nucléotides / Contribution of DNA polymerase eta in the DNA damage response in cells deficient in nucleotide excision repair

Quinet De Andrade, Annabel 30 October 2012 (has links)
Les dommages de l’ADN interfèrent avec sa réplication et sa transcription. Ils sont en général éliminés par des mécanismes de réparation, en particulier par la réparation par excision de nucléotides (NER). Ils peuvent également être tolérés grâce à la synthèse translésionnelle (TLS). Au cours de mon travail de thèse, nous avons étudié l’implication de la voie NER et de l’ADN polymérase η (Polη) associée à la TLS dans la réponse aux lésions de l’ADN induites par les rayons ultraviolet (UV) et par une drogue chimiothérapeutique, la doxorubicine. Les principales lésions induites par les rayons UV sont les dimères de pyrimidine cyclobutane (CPDs) et les pyrimidines (6-4) pyrimidones (6-4PPs) qui sont éliminées par la NER. Les données obtenues sur la formation de régions d’ADN simple brin et celles du cycle cellulaire suggèrent que les lésions 6-4PPs sont tolérées par un mécanisme de réparation post-réplicative dans des cellules XP-C déficientes en NER (xeroderma pigmentosum du groupe C). Dans un second temps, mon objectif a été de déterminer la contribution de Polη dans la prise en charge des lésions induites par les rayons UV dans les cellules XP-C. En effet, il est connu que Polη est responsable de la réplication des CPDs, mais l’absence de Polη dans des cellules proficientes en NER ne les rend pas hypersensibles aux rayons UV. De plus, il a été suggéré que Polη soit impliquée dans la TLS des 6-4PPs. En réprimant par shARN l’expression du gène codant Polη dans les cellules XP-C, j’ai réussi à établir la première lignée stable de fibroblastes humains déficients à la fois en NER et en Polη (XP-C/PolηKD). Cette réduction fonctionnelle de l’expression de Polη dans les cellules XP-C irradiées à faible dose d’UV a entraîné un arrêt irréversible du cycle cellulaire, la génération de cassures simple- et double-brin de l’ADN et une mortalité cellulaire significative. Ces résultats montrent un rôle crucial de Polη dans la survie des cellules déficientes en NER après irradiation UV et suggèrent que Polη puisse participer aussi à la TLS des 6-4PPs.Par ailleurs, nous avons montré que les cellules déficientes en NER ou en Polη ont été sensibilisées par un traitement à la doxorubicine indiquant que la NER et Polη participent également de la prise en charge des lésions induites par cet agent. Donc au cours de mon travail de thèse, j’ai mis en évidence des interconnexions complexes entre Polη et la voie NER en réponses à différents agents génotoxiques. / DNA damages interfere with replication and transcription. They are normally eliminated by repair mechanisms, such as nucleotide excision repair (NER). They can also be tolerated by translesion DNA synthesis (TLS). During my PhD work, we studied the involvement of NER pathway and DNA polymerase η (Polη) associated with TLS in response to DNA damages induced by ultraviolet (UV) and a chemotherapeutic drug, doxorubicin.The main lesions induced by UV irradiation are cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidones (6-4PPs) which are removed by NER. Data on the formation of single-stranded DNA regions and those of the cell cycle suggest that 6-4PPs lesions are tolerated by a post-replication repair mechanism in XP-C cells (xeroderma pigmentosum group C, deficient in NER). In a second time, my goal was to determine the contribution of Polη in the tolerance of lesions induced by UV in XP-C cells. Indeed, it is known that Polη is responsible for the replication of CPDs, but in the absence of Polη, NER-proficient cells are not hypersensitive to UV rays. In addition, it was suggested that Polη is also involved in the TLS of 6-4PPs. By knocking down (KD) the expression of the gene encoding Polη in XP-C cells with a shRNA, we established the first stable line of human fibroblasts deficient in both NER and Polη (XP-C/PolηKD). This functional reduction in the expression of Polη in XP-C cells irradiated with low UVC dose resulted in an irreversible cell cycle arrest, the generation of single- and double-strand DNA breaks and significant cell death. These data demonstrate a crucial role for Polη in the survival of NER-deficient cells after UV irradiation and suggest that Polη can also participate in the TLS of 6-4PPs.In addition, we showed that cells deficient in NER or Polη are sensitized by treatment with doxorubicin indicating that NER and Polη also participate in the response of DNA damages induced by this agent.In conclusion, during my PhD work, we highlighted the complex interconnections between Polη and NER pathway in response to different genotoxic agents. / Os danos do DNA interferem com a sua replicação e transcrição. Eles são normalmente removidos por mecanismos de reparo, como o reparo por excisão de nucleotídeos (NER). Lesões não removidas também podem ser toleradas por processos específicos de síntese de translesão (TLS). Durante este trabalho de tese, estudamos a implicação da via NER e da DNA polimerase η (Polη), associada à TLS, na resposta aos danos no DNA provocados pela irradiação ultravioleta (UV) e por um agente quimioterápico, a doxorrubicina.As principais lesões provocadas pela luz UV são os dímeros de pirimidina ciclobutano (CPDs) e as pirimidinas (6-4) pirimidonas (6-4PPs) que são removidas pelo NER. Os resultados obtidos sobre a formação de regiões de DNA simples fita e os dados de ciclo celular indicam que as lesões 6-4PPs são toleradas por un mecanismo de reparo pós-replicativo em células XP-C deficientes em NER (xeroderma pigmentosum do grupo C). Em seguida, buscamos determinar a contribuição da Polη na tolerância de lesões UV em células XP-C. De fato, é conhecido que a Polη é responsável pela replicação dos CPDs, porém a ausência dessa em células proficientes em NER não as torna hypersensíveis à irradiação UV. Além disso, foi sugerido que Polη poderia estar envolvida na TLS dos 6-4PPs. A expressão do gene POLH, que codifica Polη, foi silenciada através de shRNA em células XP-C, sendo assim estabelecida a primeira linhagem estável de fibroblastos humanos deficientes em ambas proteínas XPC e Polη. Essa redução funcional da expressão de Polη em células XP-C provocou, em células irradiadas com doses baixas de luz UV, uma parada irreversível no ciclo celular, a formação de quebras no DNA (incluindo quebras simples e dupla fita) e morte celular. Esses resultados revelam um papel crucial da Polη na sobrevida das células deficientes em NER após irradiação UV e sugerem que Polη possa também participar da TLS de lesões tipo 6-4PP.Por outro lado, participei de trabalho no qual demonstramos que células deficientes em NER ou em Polη são sensibilizadas pelo tratamento com doxorrubicina, o que indica que o NER e a Polη participam da resposta aos danos induzidos por esse agente.Em conclusão, ao longo do meu trabalho de tese, eu coloquei em evidência interconexões complexas entre a Polη e o NER em resposta a diferentes agentes genotóxicos.
2

Eixo XPC-P53-H202 e disfunção mitocondrial: qual é o fator central? / XPC-p53-H2O2 axis and mitochondrial disfunction: Which is the key player

Freire, Thiago de Souza 20 August 2018 (has links)
A ausência de XPC, uma proteína canonicamente envolvida em reparo de DNA por excisão de nucleotídeos, está associada a vários fenótipos característicos de disfunção mitocondrial como o desequilíbrio entre os complexos da cadeia transportadora de elétrons (CTE), redução no consumo de oxigênio, maior produção de peróxido de hidrogênio, e maior sensibilidade a agentes que causam estresse mitocondrial. Contudo, uma descrição mecanística da relação entre deficiência de XPC e disfunção mitocondrial ainda não está bem estabelecida. Aqui mostramos que a deficiência de XPC está associada ao aumento na expressão do supressor de tumor p53. Essa alteração é acompanhada pelo aumento da expressão de diversas proteínas que participam em importantes funções mitocondriais. A inibição de p53 reverte a superexpressão de algumas dessas proteínas. O tratamento com o inibidor do Complexo III da CTE antimicina A induz aumento da expressão de p53 de forma mais acentuada na linhagem Xpc-/-, enquanto o tratamento com o antioxidante N-acetilcisteína diminue a produção basal de H2O2, expressão de p53 e sensibilidade aumentada ao tratamento com antimicina A. Em conjunto, nossos resultados suportam a hipótese de que o aumento da produção de H2O2 em células Xpc-/- tem um papel causal na regulação da expressão de p53 e na disfunção mitocondrial / Although XPC has been initially implicated in the nucleotide excision DNA repair pathway, its deficiency is associated with mitochondrial dysfunction, including unbalanced electron transport chain (ETC) activity, lower oxygen consumption, increased hydrogen peroxide production, and greater sensitivity to mitochondrial stress. However, a mechanistic understanding of the role of XPC in regulating mitochondrial function is still not well established. Here we show that XPC deficiency is associated with increased expression of the tumor suppressor p53, which is accompanied by increased expression of several proteins that participate in important mitochondrial functions. Inhibition of p53 reverses the overexpression of some of these proteins. In addition, treatment with the ETC inhibitor antimycin A induces p53 expression more robustly in the Xpc-/- cells, while treatment with the antioxidant N-acetylcysteine decreases basal H2O2 production, p53 expression and sensitivity to antimycin A treatment. Together, our results support a model in which increased H2O2 production in Xpc-/- causes upregulation of p53 expression and mitochondrial dysfunction
3

Prote?mica comparativa de linhagens celulares humanas expostas a estresse oxidativo induzido por riboflavina fotossensibilizada

Timoteo, Ana Rafaela de Souza 28 September 2011 (has links)
Made available in DSpace on 2014-12-17T14:10:25Z (GMT). No. of bitstreams: 1 AnaRST_DISSERT.pdf: 1422698 bytes, checksum: e73998b03faa562a4c08ff6ab012f0cc (MD5) Previous issue date: 2011-09-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation / Esp?cies reativas de oxig?nio (EROs) s?o geradas, continuamente, podendo ser provenientes do metabolismo celular ou induzidas por fatores ex?genos, al?m disso, apresentam a capacidade de danificar mol?culas, como DNA e prote?nas. BER ? considerada a principal via de reparo de danos oxidativos ao DNA, entretanto, diversos estudos tem demonstrado a import?ncia da participa??o de prote?nas de outras vias na corre??o destas les?es. A defici?ncia de algumas enzimas da via NER, como CSB e XPC, que atuam na etapa de reconhecimento da les?o nas duas subvias deste sistema, influencia na efic?cia do reparo de danos oxidativos. Entretanto, os mecanismos atrav?s dos quais, c?lulas deficientes nestas enzimas respondem ao estresse oxidativo e suas conseq??ncias ainda necessitam ser mais bem esclarecidos. Desta forma, o objetivo deste trabalho foi realizar uma an?lise prote?mica de linhagens celulares proficiente e deficiente em NER, expostas ao estresse oxidativo, de modo a identificar prote?nas envolvidas, diretamente ou n?o, na resposta ao estresse oxidativo e reparo de DNA. Para isto, tr?s linhagens de fibroblastos humanos, MRC5-SV, CS1AN (deficiente em CSB) e XP4PA (deficiente em XPC), foram tratadas com riboflavina fotosenssibilizada e, em seguida, foi realizada a identifica??o das prote?nas diferencialmente expressas atrav?s do seq?enciamento de pept?deos por espectrometria de massas. A partir dos resultados, observou-se que a linhagem MRC5-SV apresenta aumento de express?o na maioria das prote?nas envolvidas com a defesa celular, sendo uma resposta esperada para uma linhagem celular normal submetida a estresse. A linhagem CS1AN demonstrou uma resposta desarticulada, n?o sendo poss?vel estabelecer muitas intera??es entre as prote?nas identificadas, podendo ser uma explica??o para sua sensibilidade a tratamentos com riboflavina e outros agentes oxidantes e aumento da morte celular provavelmente por indu??o das vias pr?apopt?ticas. J? linhagem XP4PA apresentou maior express?o de prote?nas bloqueadoras da apoptose, assim como, houve a inibi??o ou redu??o da express?o de outras envolvidas com a ativa??o deste processo, sugerindo a ativa??o de um circuito anti-apopt?tico nesta linhagem, o que pode ajudar a explicar a alta susceptibilidade de indiv?duos XPC a desenvolvimento de c?nceres. Estes resultados tamb?m contribuir?o para o esclarecimento dos mecanismos de atua??o de NER em danos oxidativos e para a compreens?o de vias importantes na correla??o do estresse oxidativo, reparo e forma??o de tumores mal?gnos
4

Eixo XPC-P53-H202 e disfunção mitocondrial: qual é o fator central? / XPC-p53-H2O2 axis and mitochondrial disfunction: Which is the key player

Thiago de Souza Freire 20 August 2018 (has links)
A ausência de XPC, uma proteína canonicamente envolvida em reparo de DNA por excisão de nucleotídeos, está associada a vários fenótipos característicos de disfunção mitocondrial como o desequilíbrio entre os complexos da cadeia transportadora de elétrons (CTE), redução no consumo de oxigênio, maior produção de peróxido de hidrogênio, e maior sensibilidade a agentes que causam estresse mitocondrial. Contudo, uma descrição mecanística da relação entre deficiência de XPC e disfunção mitocondrial ainda não está bem estabelecida. Aqui mostramos que a deficiência de XPC está associada ao aumento na expressão do supressor de tumor p53. Essa alteração é acompanhada pelo aumento da expressão de diversas proteínas que participam em importantes funções mitocondriais. A inibição de p53 reverte a superexpressão de algumas dessas proteínas. O tratamento com o inibidor do Complexo III da CTE antimicina A induz aumento da expressão de p53 de forma mais acentuada na linhagem Xpc-/-, enquanto o tratamento com o antioxidante N-acetilcisteína diminue a produção basal de H2O2, expressão de p53 e sensibilidade aumentada ao tratamento com antimicina A. Em conjunto, nossos resultados suportam a hipótese de que o aumento da produção de H2O2 em células Xpc-/- tem um papel causal na regulação da expressão de p53 e na disfunção mitocondrial / Although XPC has been initially implicated in the nucleotide excision DNA repair pathway, its deficiency is associated with mitochondrial dysfunction, including unbalanced electron transport chain (ETC) activity, lower oxygen consumption, increased hydrogen peroxide production, and greater sensitivity to mitochondrial stress. However, a mechanistic understanding of the role of XPC in regulating mitochondrial function is still not well established. Here we show that XPC deficiency is associated with increased expression of the tumor suppressor p53, which is accompanied by increased expression of several proteins that participate in important mitochondrial functions. Inhibition of p53 reverses the overexpression of some of these proteins. In addition, treatment with the ETC inhibitor antimycin A induces p53 expression more robustly in the Xpc-/- cells, while treatment with the antioxidant N-acetylcysteine decreases basal H2O2 production, p53 expression and sensitivity to antimycin A treatment. Together, our results support a model in which increased H2O2 production in Xpc-/- causes upregulation of p53 expression and mitochondrial dysfunction
5

Etude du facteur de réparation de l’ADN, Xeroderma pigmentosum du groupe C (XPC), dans les cellules souches hématopoïétiques / Study of DNA repair factor Xeroderma pigmentosum group C (XPC) in hematopoietic stem cells

Zebian, Abir 12 December 2014 (has links)
Les dommages de l'ADN peuvent s’accumuler dans les cellules souches hématopoïétiques(CSH) suite aux stress externes ou métaboliques et perturber leur fonctionnement et/ou leur maintien.La réparation par excision de nucléotides (NER), initiée par l’arrêt de la transcription (TCR) ou par lareconnaissance de distorsions des régions non transcrites (GGR) de l’ADN, est nécessaire àl’hématopoïèse à long terme. XPC, un facteur clé du système GGR, participe à d’autres réponses austress oxydatif. Le laboratoire a montré que la perte de XPC provoque l’accumulation de mutations, unstress métabolique et la carcinogenèse. Notre objectif est d’évaluer son expression et son rôle dans lemaintien et la différenciation des CSH. Nos résultats montrent qu’il est plus exprimé dans les cellulesimmatures CD34+ que dans les CD34- matures. Aussi, XPC apparaît sous trois poids moléculairesdifférents certainement liés à des modifications post-traductionnelles. Son extinction par ARNinterférence n'affecte ni la prolifération ni la capacité progénitrice in vitro des cellules CD34+.Cependant, les cellules déficientes implantées chez des souris immunodéficientes disparaissentprogressivement suggérant une perte des CSH ou de leur capacité de différenciation. Postulant queles mutations s’accumulent avec le temps, nous avons étudié l’hématopoïèse chez des sourisdéficientes en XPC jeunes et âgées. Les différences décrites dans l’hématopoïèse chez les individusjeunes et âgés sont retrouvées mais, de manière surprenante, aucune différence entre les animauxsauvages et mutés quelque soit l’âge ou le stress génotoxique n’est observée. Les résultats obtenussur les cellules humaines démontrent un rôle potentiel de XPC dans l’hématopoïèse, mais denouvelles investigations sont nécessaires pour mieux comprendre les mécanismes impliqués, et lapossible participation de XPC dans la leucémogenèse. / DNA damage may accumulate in hematopoietic stem cells (HSC) due to external ormetabolic stresses, leading to perturbation in their function and/or maintenance. Nucleotide excisionrepair (NER), initiated in the DNA by the stop of transcription (TCR) or by the recognition of distortionsin transcribed regions (GGR), is necessary for long-term hematopoiesis. XPC, a key factor in GGR, isimplicated in oxidative stress. The laboratory has demonstrated that XPC loss leads to theaccumulation of mutations, metabolic stress and carcinogenesis. Our objective is to evaluate XPCexpression and its role in HSC maintenance and differentiation. Results showed that XPC is highlyexpressed in immature CD34+ cells compared to mature CD34- cells. In addition, XPC appeared withthree different molecular weights, certainly linked to post-translational modifications. XPC silencing byshRNA did not affect the proliferation or the progenitor ability of CD34+ cells in vitro. However, deficientcells transplanted in immunodeficient mice disappeared progressively, suggesting the loss of HSCs ortheir differentiation capacity. Postulating that mutations accumulate with time, we have studiedhematopoiesis in young and aged XPC deficient mice. Differences described in young and agedhematopoiesis systems were found but, surprisingly, no difference was observed between wild typeand mutant mice at any age or genotoxic stress. Data from human cells demonstrate a potential rolefor XPC in HSC but new investigations are necessary to better understand the mechanisms implicatedand if XPC may participate in leukemogenesis.
6

Role of oxidative and energy metabolism in skin aging and UV-B induced carcinogenesis / Le rôle du métabolisme oxydatif et énergétique dans le vieillissement cutané et la carcinogenèse UV-B induits

Hosseini, Seyed Mohsen 09 July 2015 (has links)
L’objectif de notre étude était de montrer le rôle du métabolisme oxydatif et énergétique au cours du vieillissement cutané et dans les cancers cutanés UVB-induits. Dans une première partie, nous avons cherché à établir un lien entre l'instabilité génétique, la production de ROS et l’altération métabolique dans le processus de vieillissement. Les résultats obtenus sur le modèle de souris XPC KO ont démontré qu’un excès de stress oxydatif dû à une sur activation du NOX1, couplé à des altérations métaboliques, jouaient un rôle prépondérant dans le vieillissement prématuré. L’application topique de notre nouvel inhibiteur de NOX, induisant l’inhibition de la production de ROS et ainsi l’apparition d’altération métabolique, a permis d’empêcher le vieillissement cutané prématuré chez les souris XPC KO. Nos résultats suggèrent que l’InhNOX peut être considéré comme une cible prometteuse dans la prévention du vieillissement prématuré et les maladies liées à NOX. Très peu d'informations sont disponibles sur la contribution de la reprogrammation du métabolisme énergétique dans l'initiation et la progression du cancer. Dans la deuxième partie de ma thèse, nous avons utilisé un modèle multi-étapes de cancer de la peau UVB-induits, nous permettant ainsi d’évaluer le rôle de la reprogrammation métabolique dans les différentes étapes de la cancérogenèse. Nous avons ensuite démontré que l'irradiation chronique à UVB entraînait une diminution de l’activité de la glycolyse, du cycle TCA et de la β-oxydation des acides gras, tandis que la synthèse d'ATP mitochondriale et une partie de la chaîne de transport d'électrons (CTE) étaient up-régulés. Nous avons montré que l’augmentation accrue de CTE été liée à la sur-activation des dihyroorotate déshydrogénase (DHODH). Alors que la diminution de l'activité DHODH ou ETC (chimiquement ou génétiquement) a conduit à une hypersensibilité à l'irradiation UVB. Nos résultats indiquent que la voie DHODH par l’induction de la synthèse d'ATP et de CTE joue un rôle majeur entre l'efficacité de réparation d'ADN et la reprogrammation métabolique au cours de la carcinogenèse UVB-induits. / Objective of the present research study was investigating the role of oxidative and energy metabolism in skin aging and UVB-induced skin cancer. In the first part, we aimed to find the link between genetic instability, ROS generation and metabolism alteration in the process of aging. The obtained results on XPC KO mice model demonstrated that excess of oxidative stress in addition to alterations in energy metabolism due to over activation of NOX1 play a causative role in premature skin aging. Topical application of novel NOX inhibitor prevented the premature aging in XPC KO mice through inhibition of ROS generation and alteration of energy metabolism. Our results suggest that the InhNOX can be considered as a promising target in prevention of premature aging and NOX-associated diseases. Little information is available on the contribution of energy metabolism reprogramming in cancer initiation and promotion. To assess the role of metabolic reprogramming in different phases of carcinogenesis, in the second part of my thesis we employed a multistage model of ultraviolet B (UVB) radiation-induced skin cancer. We showed that chronic UVB irradiation results in decreased glycolysis, TCA cycle and fatty acid β-oxidation while at the same time mitochondrial ATP synthesis and a part of the electron transport chain (ETC) are upregulated. Increased ETC was further found to be related to the over-activation of dihyroorotate dehydrogenase (DHODH). Decreased activity of DHODH or ETC (chemically or genetically) led to hypersensitivity to UVB irradiation. Our results indicated that DHODH pathway through induction of ETC and ATP synthesis represents the relation between DNA repair efficiency and metabolism reprogramming during UVB-induced carcinogenesis.
7

Le facteur de réparation XPC est un cofacteur de l'ARN polymérase II régulant les modifications post-traductionnelles des histones lors de la transcription / The DNA repair factor XPC is a Pol II cofactor regulating the histone PTMs during transcription

Semer, Maryssa 29 June 2018 (has links)
La voie de réparation NER implique une cascade de complexes protéiques dont le senseur des dommages de l’ADN (XPC/HR23B). Des mutations dans les gènes de la NER (TTD-A, XPA-G, XPV, CSA et CSB), sont associées à des maladies génétiques humaines dont le Xeroderma Pigmentosum (XP), la Trichothiodystrophie (TTD) et le syndrome de Cockayne (CS). L’ensemble des symptômes des patients ne peut être expliqué seulement par un défaut de la réparation de l’ADN. Or depuis quelques années, il a été prouvé que les facteurs de la NER sont aussi impliqués lors de la transcription. Dans le cadre de ma thèse, je me suis particulièrement intéressé à la protéines XPC en déterminant son rôle transcriptionnel à l’échelle génomique afin de mieux comprendre les conséquences de sa dérégulation dans un contexte pathologique. En ce sens, mon second objectif a été de caractériser au niveau moléculaire l’étiologie de nouveaux patients XP en analysant de manière combinée les évènements moléculaires de la NER et la transcription associés à XPC. Nos différentes approches expérimentales ont permis d’identifier au niveau génomique un ensemble de gènes sont les promoteurs sont régulés aussi bien positivement que négativement par XPC dans un contexte RAR dépendant. De plus, nous montrons que XPC interagit avec KAT2A contenu dans le complexe ATAC, ainsi que qu’avec le facteur de transcription E2F1, le facteur de remodelage de la chromatine BRD2 et le variant d’histone H2A.Z. Via KAT2A, ce complexe va acétyler non seulement H2A.Z mais également H3K9 au niveau des promoteurs ciblés par E2F1. / NER involves a cascade of protein complexes including the DNA damage sensor (XPC/HR23B). Mutations in NER genes (TTD-A, XPA-G, XPV, CSA and CSB) are associated with human genetic diseases including Xeroderma pigmentosum (XP), Trichothiodystrophy (TTD) and Cockayne Syndrome (CS). All the symptoms can only be explained by a defect of the DNA repair. However all the symptoms can only be explained by a defect of the DNA repair. However, it has been proven that NER factors are also involved in transcription. As the genomic scale to better understand the consequences of its deregulation in a pathological context. In this sense, my second goal has been to characterize at the molecular level the etiology of new XP patients by analyzing in a combined way the molecular events of the NER and the transcription associated with XPC. Our different experimental approaches have made it possible to identify at genomic level a set of gene whose promoters are regulated both positively and negatively by XPC in a dependent RAR context. In addition, we show that XPC interacts with KAT2A contained in the ATAC complex, as well as with the transcription factor E2F1, the chromatin remodeling factor BRD2, and the histone variant H2A.Z. Via KAT2A, this complex will acetylate not only H2A.Z but also H3K9 at promoters targeted by E2F1.
8

Papel da prote?na de reparo XPC na regula??o das prote?nas de reparo APE1, OGG1 e PARP-1 em c?lulas humanas e de camundongos

Melo, Julliane Tamara Ara?jo de 26 February 2014 (has links)
Made available in DSpace on 2014-12-17T14:03:36Z (GMT). No. of bitstreams: 1 JullianeTAM_TESE_Parcial.pdf: 7138229 bytes, checksum: a06700fccf67cc2db086f62bf86db506 (MD5) Previous issue date: 2014-02-26 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- ? are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins / A maior parte do nosso conhecimento sobre a via de Reparo de Excis?o Nucleot?deos (NER) vem de estudos usando a luz ultravioleta (UV) como fonte de danos no DNA. Contudo, embora os danos no DNA causados pela luz UV sejam relacionados ? ocorr?ncia de mutag?nese, morte celular e tumorig?nese, eles n?o justificam fen?tipos como neurodegenera??o e tumorig?nese observados em pacientes com s?ndromes como Xeroderma Pigmentosum (XP) e S?ndrome de Cockayne (CS), as quais s?o associadas ? defici?ncia na via NER. Adicionalmente, evid?ncias mais recentes indicam o envolvimento da via NER no reparo de 8-oxodG, um substrato t?pico da via de Reparo por Excis?o de Bases (BER). Uma vez que a defici?ncia na via BER resulta em instabilidade gen?mica, doen?as neurodegenerativas e c?ncer, foi investigado neste trabalho o impacto da defici?ncia em XPC nas fun??es da via BER em c?lulas humanas. Foram realizadas an?lises da express?o e da localiza??o celular de APE1, OGG1 e PARP-1, principais enzimas da via BER, em fibroblastos humanos deficientes na via NER. Os resultados demonstraram que os n?veis end?genos de APE1, PARP-1 e OGG1 s?o reduzidos nos fibroblastos deficientes em XPC, os quais foram mais resistentes a diferentes tipos de agentes oxidantes e apresentaram n?veis elevados de 8-oxodG quando comparados aos demais fibroblastos deficientes na via NER. Adicionalmente, altera??es sutis na localiza??o nuclear e mitocondrial de APE1 foram observadas nos fibroblastos deficientes em XPC. Para confirmar o impacto da defici?ncia de XPC na regula??o da express?o e atividade de APE1 e OGG1, foi constru?da uma linhagem complementada com XPC. Embora a complementa??o tenha sido parcial, foi poss?vel observar que os fibroblastos parcialmente complementados com XPC apresentaram n?veis maiores de express?o de OGG1 quando comparados aos fibroblastos deficientes em XPC. Os extratos dos fibroblastos parcialmente complementados com XPC tamb?m apresentaram uma elevada atividade enzim?tica de OGG1. Contudo, n?o foram observadas mudan?as na express?o e atividade de APE1 nos fibroblastos parcialmente complementados com XPC. Adicionalmente, foi poss?vel verificar a presen?a da forma completa de APE1 (37 kDa) e de OGG1-? na mitoc?ndria dos fibroblastos deficientes em XPC e parcialmente complementados com XPC. Por outro lado, observou-se que a express?o de APE1 e PARP-1 n?o ? alterada no c?rebro e f?gado de camundongos knockouts para XPC. Contudo, a defici?ncia em XPC resultou em mudan?as na localiza??o celular de APE1 no hipocampo e hipot?lamo. Ainda, foi observada a ocorr?ncia de uma intera??o f?sica entre as prote?nas XPC e APE1 em c?lulas humanas. Em conclus?o, os dados sugerem que a prote?na XPC possui um papel na regula??o da express?o e da atividade de OGG1 em c?lulas humanas e est? envolvida na regula??o da localiza??o celular de APE1 principalmente em camundongos. Adicionalmente, as respostas celulares dos fibroblastos deficientes na via NER ao estresse oxidativo podem n?o estar associadas ? defici?ncia na via NER per se, mas podem incluir novas fun??es das enzimas da via NER na regula??o da express?o e localiza??o celular das prote?nas da via BER / 2020-01-01
9

Novo papel da proteína XPC na regulação dos complexos da cadeia de transporte de elétrons e desequilíbrio redox / New role of XPC protein in regulating the electron transport chain complexes and redox unbalance

Mori, Mateus Prates 22 April 2015 (has links)
Espécies reativas de oxigênio (EROs) são normalmente e continuamente geradas em mitocôndrias, majoritariamente na cadeia de transporte de elétrons (CTE). Harman (1956, 1972 e 1992) teorizou que os radicais livres gerados nas mitocôndrias seriam a principal causa do envelhecimento. De fato, durante o envelhecimento é observado um desequilíbrio entre formação e remoção de EROs, que resulta em estresse redox. Essa condição favorece a formação de lesões oxidadas no DNA, acarretando em mutagênese ou morte celular. Diversos mecanismos moleculares cooperam para o reparo de DNA. Duas vias de reparo de DNA lidam com a maioria das lesões: o reparo por excisão de base (BER) e o reparo por excisão de nucleotídeos (NER). A via BER corrige pequenas modificações de bases que surgem de reações de desaminação, alquilação e oxidação. A via NER é mais versátil, reconhecendo lesões que distorcem a dupla hélice de DNA, como danos induzidos por luz UV e adutos volumos. Pacientes xeroderma pigmentoso (XP-A a XP-G) herdam mutações em um de sete genes que codificam proteínas envolvidas na via NER, ou em um gene que codifica uma polimerase translesão (XP-V). A doença é caracterizada por fotosensibilidade e incidência elevada de neoplasias cutâneas. A proteína XPC atua na etapa de reconhecimento da lesão de DNA na subvia de reparo global do genoma (GG-NER), e sua mutação dá origem aos sintomas clássicos de XP. Novas funções de XPC foram recentemente descritas: i) atuando como cofator na via BER auxiliando as DNA glicosilases OGG1, TDG e SMUG; ii) atuando como cofator transcricional de elementos responsivos a Oct4/Sox2, RXR e PPARα; e iii) na adaptação metabólica na transformação de queratinócitos. Então, propusemo-nos a investigar as relações entre XPC e a manutenção da integridade do DNA mitocondrial, a sensibilidade celular a estresse redox mitocondrial e possíveis alterações bioenergéticas e redox. Para tal, padronizamos um ensaio in vitro de cinética de incisão em DNA plasmidial a fim de investigarmos o possível papel de XPC no reparo de lesões oxidadas em mtDNA. Porém, nossos dados revelaram que XPC não se encontra em mitocôndrias. Apesar disso, células XP-C são mais sensíveis ao tratamento com azul de metileno (AM), antimicina A (AA) e rotenona (ROT), que geram estresse redox mitocondrial. A sensibilidade à AA foi completamente revertida em células corrigidas. Células XP-C apresentaram alterações quanto ao uso dos complexos mitocondriais, com diminuição da taxa de consumo de oxigênio (OCR) via complexo I e um aumento da OCR via complexo II, dependente da presença de XPC. Ademais, a linhagem XP-C apresentou um desequilíbrio redox mitocondrial com maior produção de EROs e menor atividade de GPx. O DNA mitocondrial de células XP-C apresentou níveis elevados de lesão e deleção, que no entanto não retornaram aos níveis encontrados em células selvagens na linhagem XP-C corrigida. Observamos uma acentuada diminuição da expressão de PPARGC1A, um importante regulador de biogênese mitocondrial. Contudo, não foi possível determinar o mecanismo de supressão da expressão de PPARGC1A. Por fim, identificamos que o tipo de mutação em XPC pode estar associado a expressão de PPARGC1A. Esse estudo abre novas possibilidade na investigação do papel de proteína XPC, à parte da instabilidade genômica, na adaptação metabólica e desequilíbrio redox em direção da progressão tumoral. / Mitochondria continuously produce reactive oxygen species (ROS), mainly at the electron transport chain. Harman (1956, 1972 e 1992) proposed that normal aging is driven by increased mitochondrially generated free radicals. Indeed, during the course of aging there is an increased imbalance between formation and removal of ROS, leading to redox stress. This condition favours the formation of oxidized DNA lesions, given rise to mutations and cell death. Several molecular mechanisms cooperates to repair the DNA. Two DNA repair pathways deal with the majority of lesions: base excision repair (BER) and nucleotide excision repair (NER). The BER pathway corrects small base modifications that arise from deamination, alkylation and oxidation reactions. The NER pathway is more versitile, recognizing helix-distorting lesions, such as UV-induced damage and bulky adducts. Xeroderma pigmentosum (XP-A to XP-G) patients inherit mutations in one of seven protein-coding genes involved in NER pathway, or in a gene coding a translesion DNA polymerase (XP-V). Photosensitivity and a thousand-fold increased in the risk of developing cutaneous neoplasms are the main clinical features of XP. XPC protein functions in the recognition step of global genome NER (GG-NER) sub-pathway, and mutations in this gene lead to classical XP symptoms. Recently, it has been described that XPC acts: i) as a cofactor in BER pathway through functional interaction with DNA glycosylases OGG1, TDG and SMUG1; ii) as coactivator in transcription at Oct4/Sox2, RXR and PPARα responsive elements; iii) in metabolic shift during keratinocytes transformation. Thus, we sought to investigate a possible role for XPC in the maintenance of mtDNA integrity, cellular sensitivity to mitochondrial redox stress and eventual bioenergetic and redox changes. For this purpose, we established an in vitro plasmid incision assay to investigate the possible role of XPC in the repair of oxidized lesions in mitochondrial DNA. However, our data revealed that XPC did not localized in mitochondria. Nonetheless, XP-C cells are more sensitive to methylene blue, antimycin A (AA) and rotenone treatment, which induce mitochondrial redox stress. The XP-C sensitivity to AA was completely reverted in XPC-corrected cells. XP-C cells presented altered usage of mitochondrial complexes, with decreased oxygen consumption rate (OCR) via complex I and increased OCR through complex II, an XPC-dependent phenomenon. Furthermore, the XP-C cell line showed mitochondrial redox imbalance with increased ROS production and decrease GPx activity. MtDNA from XP-C cells accumulate lesions and deletions, which, however, were found at similar levels in the corrected cell line. We identified a sharp decrease in the expression of PPARGC1A, a master regulator of mitochondrial biogenesis. Nevertheless, it was not possible to determine the mechanism of suppression of PPARGC1A expression. Finally, our results suggest a possible link between the type of XPC mutation and PPARGC1A expression. This study unfolds new possible roles for XPC, aside from its established roles in genomic instability, in metabolic adaptation and redox imbalance towards tumour progression.
10

Novo papel da proteína XPC na regulação dos complexos da cadeia de transporte de elétrons e desequilíbrio redox / New role of XPC protein in regulating the electron transport chain complexes and redox unbalance

Mateus Prates Mori 22 April 2015 (has links)
Espécies reativas de oxigênio (EROs) são normalmente e continuamente geradas em mitocôndrias, majoritariamente na cadeia de transporte de elétrons (CTE). Harman (1956, 1972 e 1992) teorizou que os radicais livres gerados nas mitocôndrias seriam a principal causa do envelhecimento. De fato, durante o envelhecimento é observado um desequilíbrio entre formação e remoção de EROs, que resulta em estresse redox. Essa condição favorece a formação de lesões oxidadas no DNA, acarretando em mutagênese ou morte celular. Diversos mecanismos moleculares cooperam para o reparo de DNA. Duas vias de reparo de DNA lidam com a maioria das lesões: o reparo por excisão de base (BER) e o reparo por excisão de nucleotídeos (NER). A via BER corrige pequenas modificações de bases que surgem de reações de desaminação, alquilação e oxidação. A via NER é mais versátil, reconhecendo lesões que distorcem a dupla hélice de DNA, como danos induzidos por luz UV e adutos volumos. Pacientes xeroderma pigmentoso (XP-A a XP-G) herdam mutações em um de sete genes que codificam proteínas envolvidas na via NER, ou em um gene que codifica uma polimerase translesão (XP-V). A doença é caracterizada por fotosensibilidade e incidência elevada de neoplasias cutâneas. A proteína XPC atua na etapa de reconhecimento da lesão de DNA na subvia de reparo global do genoma (GG-NER), e sua mutação dá origem aos sintomas clássicos de XP. Novas funções de XPC foram recentemente descritas: i) atuando como cofator na via BER auxiliando as DNA glicosilases OGG1, TDG e SMUG; ii) atuando como cofator transcricional de elementos responsivos a Oct4/Sox2, RXR e PPARα; e iii) na adaptação metabólica na transformação de queratinócitos. Então, propusemo-nos a investigar as relações entre XPC e a manutenção da integridade do DNA mitocondrial, a sensibilidade celular a estresse redox mitocondrial e possíveis alterações bioenergéticas e redox. Para tal, padronizamos um ensaio in vitro de cinética de incisão em DNA plasmidial a fim de investigarmos o possível papel de XPC no reparo de lesões oxidadas em mtDNA. Porém, nossos dados revelaram que XPC não se encontra em mitocôndrias. Apesar disso, células XP-C são mais sensíveis ao tratamento com azul de metileno (AM), antimicina A (AA) e rotenona (ROT), que geram estresse redox mitocondrial. A sensibilidade à AA foi completamente revertida em células corrigidas. Células XP-C apresentaram alterações quanto ao uso dos complexos mitocondriais, com diminuição da taxa de consumo de oxigênio (OCR) via complexo I e um aumento da OCR via complexo II, dependente da presença de XPC. Ademais, a linhagem XP-C apresentou um desequilíbrio redox mitocondrial com maior produção de EROs e menor atividade de GPx. O DNA mitocondrial de células XP-C apresentou níveis elevados de lesão e deleção, que no entanto não retornaram aos níveis encontrados em células selvagens na linhagem XP-C corrigida. Observamos uma acentuada diminuição da expressão de PPARGC1A, um importante regulador de biogênese mitocondrial. Contudo, não foi possível determinar o mecanismo de supressão da expressão de PPARGC1A. Por fim, identificamos que o tipo de mutação em XPC pode estar associado a expressão de PPARGC1A. Esse estudo abre novas possibilidade na investigação do papel de proteína XPC, à parte da instabilidade genômica, na adaptação metabólica e desequilíbrio redox em direção da progressão tumoral. / Mitochondria continuously produce reactive oxygen species (ROS), mainly at the electron transport chain. Harman (1956, 1972 e 1992) proposed that normal aging is driven by increased mitochondrially generated free radicals. Indeed, during the course of aging there is an increased imbalance between formation and removal of ROS, leading to redox stress. This condition favours the formation of oxidized DNA lesions, given rise to mutations and cell death. Several molecular mechanisms cooperates to repair the DNA. Two DNA repair pathways deal with the majority of lesions: base excision repair (BER) and nucleotide excision repair (NER). The BER pathway corrects small base modifications that arise from deamination, alkylation and oxidation reactions. The NER pathway is more versitile, recognizing helix-distorting lesions, such as UV-induced damage and bulky adducts. Xeroderma pigmentosum (XP-A to XP-G) patients inherit mutations in one of seven protein-coding genes involved in NER pathway, or in a gene coding a translesion DNA polymerase (XP-V). Photosensitivity and a thousand-fold increased in the risk of developing cutaneous neoplasms are the main clinical features of XP. XPC protein functions in the recognition step of global genome NER (GG-NER) sub-pathway, and mutations in this gene lead to classical XP symptoms. Recently, it has been described that XPC acts: i) as a cofactor in BER pathway through functional interaction with DNA glycosylases OGG1, TDG and SMUG1; ii) as coactivator in transcription at Oct4/Sox2, RXR and PPARα responsive elements; iii) in metabolic shift during keratinocytes transformation. Thus, we sought to investigate a possible role for XPC in the maintenance of mtDNA integrity, cellular sensitivity to mitochondrial redox stress and eventual bioenergetic and redox changes. For this purpose, we established an in vitro plasmid incision assay to investigate the possible role of XPC in the repair of oxidized lesions in mitochondrial DNA. However, our data revealed that XPC did not localized in mitochondria. Nonetheless, XP-C cells are more sensitive to methylene blue, antimycin A (AA) and rotenone treatment, which induce mitochondrial redox stress. The XP-C sensitivity to AA was completely reverted in XPC-corrected cells. XP-C cells presented altered usage of mitochondrial complexes, with decreased oxygen consumption rate (OCR) via complex I and increased OCR through complex II, an XPC-dependent phenomenon. Furthermore, the XP-C cell line showed mitochondrial redox imbalance with increased ROS production and decrease GPx activity. MtDNA from XP-C cells accumulate lesions and deletions, which, however, were found at similar levels in the corrected cell line. We identified a sharp decrease in the expression of PPARGC1A, a master regulator of mitochondrial biogenesis. Nevertheless, it was not possible to determine the mechanism of suppression of PPARGC1A expression. Finally, our results suggest a possible link between the type of XPC mutation and PPARGC1A expression. This study unfolds new possible roles for XPC, aside from its established roles in genomic instability, in metabolic adaptation and redox imbalance towards tumour progression.

Page generated in 0.0249 seconds