• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the interactions of ATP and DNA with the MutL Mismatch Repair protein

Ortiz Castro, Mary January 2016 (has links)
The fidelity of DNA replication prevents mutations that may lead to cancer predisposition or neurodegenerative diseases. One mechanism that enhances DNA replication fidelity is DNA mismatch repair, which corrects mismatches and small insertion/deletion loops that have escaped polymerase proofreading. In all eukaryotes and most prokaryotes, MutL (a key mismatch repair protein) has an intrinsic endonuclease activity that nicks the newly synthesized strand and recruits downstream factors to remove and correct errors. It has been proposed that ATP binding promotes a series of conformational changes that induce structural order within MutL and stimulates its endonuclease activity. The C-terminal domain of MutL, which harbors the endonuclease site, does not bind to DNA. This has prevented the molecular characterization of its endonuclease activity. In this thesis, we first show that MutL in B. subtilis exhibits asymmetric conformations similar to yeast and human MutL homologs. We also devise a novel approach to bypass the binding defect of the C-terminal domain by using fusion proteins. We find that these fusions bind to DNA specifically and, in the presence of the processivity clamp, can nick DNA. One of these fusion proteins in particular stimulates the nicking activity much more efficiently than the C-terminal domain alone. This work lays the foundation for the mechanistic characterization of the MutL endonuclease and provides a method to stabilize transient protein-DNA interactions. / Thesis / Master of Science (MSc)
2

Genotoxic effects of nano and bulk forms of aspirin and ibuprofen on blood samples from prostate cancer patients compared to those from healthy individuals: The protective effects of NSAIDs against oxidative damage, quantification of DNA repair capacity and major signal transduction pathways in lymphocytes from healthy individuals and prostate cancer patients

Guma, Azeza S.S. January 2017 (has links)
Inhibiting inflammatory processes or eliminating inflammation represents a logical role in the suppression and treatment strategy of cancer. Several studies have shown that anti-inflammatory drugs (NSAIDs) have promise as anticancer agents while reducing metastases and mortality. NSAIDs are seriously limited by side effects and their toxicity, which can become cumulative with their long-term administration for chemoprevention. The huge development in nanotechnology allows the drugs to exhibit novel and significantly improved properties compared to the large particles of the respective bulk compound, leading to more targeted therapy and reduced dosage. The overall aim of this thesis is to add to our understanding of cancer prevention and treatment through studying the genotoxicity mechanisms of NSAIDs agents in lymphocytes. In this study, the genotoxicity mechanisms of NSAID in bulk and nanoparticles forms a strategy to prevent and minimise the damage in human lymphocytes. Aspirin nano (ASP N) caused a significant decrease in deoxyribonucleic acid (DNA) damage compared to aspirin bulk (ASP B). Also, ibuprofen nano (IBU N) showed a significant reduction in DNA damage compared to ibuprofen bulk (IBU B). Micronuclei (MNi) decreased after ASP N, ASP B and IBU N in prostate cancer patients and healthy individuals, and the ibuprofen bulk showed a significant increase of MNi formation in lymphocytes from healthy and prostate cancer patients when compared to untreated lymphocytes from prostate cancer patients. In order to study the geno-protective properties of these drugs, the protective effect of NSAIDs and the quantification of the DNA repair capacity in lymphocytes was studied. ASP N was found to increase the DNA repair capacity and reduced the reactive oxygen species (ROS) formation significantly more than ASP B. Finally, the role of NSAIDs on some key regulatory signal transduction pathways in isolated lymphocyte cells was investigated by studying their effect on ataxia-telangiectasia-mutated kinase (ATM) and ataxia-telangiectasia and Rad3-related kinase (ATR) mRNA. ATM mRNA significantly increased after treatment with ASP B, ASP N and IBU N. ATR expression also increased after treatment with IBU B and IBU N, but was only significant with IBU N. These findings indicate that a reduction in particle size had an impact on the reactivity of the drug, further emphasising the potential of nanoparticles as improvement to current treatment options.
3

Strukturní studie mechanismů opravy poškozené DNA Nei glykosylasou / Structure and molecular mechanisms of DNA repair by Nei glycosylase

Landová, Barbora January 2019 (has links)
Abasic sites (Ap site, from apurinic/apyrimidinic) are one of the most common lesions generated in DNA by spontaneous base loss or DNA repair processes. There are two equilibrating forms of an Ap site - ring-open aldehyde and cyclic hemiacetal. Ring- opened aldehydes are reactive electrophilic groups capable of formation covalent adduct with nucleophilic sites in DNA. DNA interstrand cross-link (ICL) resulting from the Ap sites is formed spontaneously as a covalent bond between ring-open aldehyde and amin group of adenin residue in the opposite strand of double stranded DNA. ICLs block DNA replication and transcription. The formation of Ap site derived ICL is relatively long process taking several hours. We assume that the ring-opening of an abasic site is the rate-limiting step in the formation of the thermodynamic ICL. However, formation, stability and DNA repair of Ap-ICL are still poorly understood processes. Here, I have set up mechanistic in vitro experiments to reveal and calculate the probability of Ap-ICl formation in vivo. In more detail, I study the rates of formation of Ap-ICLs in the sequence context of neighbouring nucleotides of freshly formed covalent bond of ICL. I focus on sequence preference, the influence of AT/ GC rich regions and the length of oligonucleotides. I have...
4

Role of DNA repair protein ERCC1 in skin cancer

Song, Liang January 2009 (has links)
Nucleotide excision repair (NER) is one of the major repair systems for removal of DNA lesions. The NER pathway has evolved mainly to repair UV-induced DNA damage and is also active against a broad range of endogenously generated oxidative lesions. Defects in NER result in the human inherited disorder xeroderma pigmentosum (XP), which is characterised by UV hypersensitivity and a 1000-fold increased risk of skin cancer. ERCC1 is essential for the NER pathway where it acts in a complex with the XPF protein to make the incision 5' to the DNA lesion. The normal 1.1kb Ercc1 transcript is expressed in all tissues. Our group has discovered a second larger 1.5 kb transcript, which initiates from an alternative promoter, and is the most abundant Ercc1 transcript in mouse skin. The aims of this project were: 1, To investigate the role of ERCC1 and of the 1.5kb skin specific Ercc1 transcript in protecting the skin against UV-induced DNA damage. 2, To study the importance of ERCC1 in melanoma skin cancer and investigate ERCC1as a possible target for therapy against melanoma. Using a panel of Ercc1 wild-type and deficient cells, we established a quantitative western blotting system to study the expression of ERCC1 in a range of mouse tissues and mouse and human cell types. Although the skin-specific Ercc1 transcript was found to be present at much higher levels in the skin of albino compared to pigmented mouse strains, this did not result in an elevated level of ERCC1 protein. We were also unable to demonstrate that UV-irradiation, or other stress-inducing treatments resulted in increased levels of ERCC1 protein in cultured mouse keratinocytes. We investigated the DNA methylation status of the normal Ercc1 promoter and that of two potential upstream promoter regions that were candidates for the source of the 1.5kb skin-specific Ercc1 transcript. We found no evidence that they were the source and, instead, used 5' RACE analysis to locate the skin-specific promoter to a polymorphic region 500bp upstream of the normal initiation site. In albino strains this region contains a SINE element, which we hypothesize could be involved in the production of the skin-specific Ercc1 transcript. We also investigated the protein level of ERCC1 and other DNA repair proteins, including XPF, MSH2, MSH6 and MLH1 in human melanoma cells and ovarian tumour cells. Significantly elevated protein levels of ERCC1 and XPF, as well as the mismatch repair protein MLH1 were found in melanoma cells. This could possibly contribute to the higher resistance to chemotherapy in melanoma, although the melanoma cell lines we tested did not show increased resistance to UV and cisplatin compared to the ovarian cancer cells tested. When Ercc1 proficient mouse melanoma cells were xenografted into nude mice the xenografts grew rapidly. Cisplatin treatment caused an initial shrinkage of the tumours, but re-growth rapidly followed. Cells re-isolated into culture from cisplatin treated xenografts had significantly higher levels of ERCC1 protein than either input cells, or cells re-isolated from untreated xenografts. An isogenic Ercc1 deficient derivative of the Ercc1 proficient mouse melanoma cell line grew as rapidly as the parent line in vitro, but grew much more slowly as xenografts. In addition, the xenografts shrank completely following cisplatin treatment and did not recover. This suggests that ERCC1 could be a drug target for melanoma therapy.
5

The role of histone H3/H4 chaperone anti-silencing function1 in maintaining genomic integrity /

Ramey, Christopher Joshua. January 2006 (has links)
Thesis (Ph.D. in Molecular Biology) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 119-130). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
6

Structural studies of two proteins involved in the maintenance of genomic stability, FEN 1 and DNA-PKcs

Parker, James M. January 2016 (has links)
Genomic stability refers to an organism’s ability to maintain and pass forward its genetic information. There are a raft of proteins and pathways whose sole purpose is maintaining this stability through swiftly replicating DNA as well as accurately repairing damage caused through contact with endogenous and exogenous DNA damaging elements. This study will focus on the structural aspects of two proteins that play a part in different areas of genome maintenance. Flap Endonuclease 1 (FEN 1) works in DNA replication, where it is tasked with removing a small RNA flap that is created during Okazaki fragment formation. This flap removal is essential to mature these fragments into one continuous strand of nascent DNA. Using the archeon Pyrococcus abyssi (Pab) as a model system has the advantage of possessing simple replicative machinery, whilst bearing striking similarities with the human system. Pab is a hyperthermophilic, piezophile meaning it thrives in conditions of high temperature and pressure. DNA-dependent protein kinase (DNA-PK) is a holoenzyme that plays a role in the Non Homologous End Joining (NHEJ) pathway by repairing DNA double strand breaks (DSB’s). In cancer therapy, a patient is exposed to DNA damaging elements, leading to an ever-increasing population of DSBs. If an inhibitor of DNA-PKcs were introduced along with this therapy it could potentiate its effect, as the cancerous cells will be less able to repair the damage. The aim of this part of the study is to determine a protocol to generate pure, soluble, correctly folded protein for the purposes of biophysical characterisation and X-ray crystallographic structural studies.
7

Inhibition of Ape1's DNA repair activity as a target in cancer identification of novel small molecules that have translational potential for molecularly targeted cancer therapy /

Bapat, Aditi Ajit. January 2009 (has links)
Thesis (Ph.D.)--Indiana University, 2009. / Title from screen (viewed on February 2, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Mark R. Kelley, Millie M. Georgiadis, John J. Turchi, Martin L. Smith. Includes vitae. Includes bibliographical references (leaves 114-133).
8

Study of DNA double strand break repair in Dictyostelium discoideum

Lempidaki, Styliani January 2012 (has links)
The homologous recombination (HR) pathway contributes to genome integrity by mediating double strand break (DSB) repair using a homologous DNA sequence as a template. In mammals Rad51 and Brca2 are molecules central to this process. Little is known about HR repair in Dictyostelium. However, research previously conducted on DSB repair using this organism has shown that DSB repair pathways are highly conserved when compared to humans. This encouraged study of HR in this organism. In this study, through a bioinformatics search I have identified putative orthologues of most human HR proteins and most interestingly of BRCA2, which cannot be found in other lower eukaryotes used as models for DSB repair, such as the budding yeast S.cerevisiae. Brcp, the Dictyostelium BRCA2 ortholog, shows similar domain structure when compared to BRCA2-related proteins identified in other organisms. To verify the implication of HR proteins in DSB repair, I developed a method to monitor recruitment of DNA repair proteins on chromatin upon DSB induction. Findings of this study suggest that both Brcp and Rad51 get recruited to chromatin upon DSB induction and are therefore implicated in DSB repair in Dictyostelium. To further study Brcp function and based on findings suggesting that disruption of brcp might be lethal, I developed a novel system for specific and conditional depletion of endogenous Dictyostelium proteins. Utilizing this system, I conducted phenotypic studies in a strain depleted of Brcp to examine its role in DNA repair. Overall this study shows that the HR pathway in Dictyostelium shows great similarity to vertebrates, making Dictyostelium an appealing model for the study of DSB repair and specifically HR.
9

Novo papel da proteína XPC na regulação dos complexos da cadeia de transporte de elétrons e desequilíbrio redox / New role of XPC protein in regulating the electron transport chain complexes and redox unbalance

Mori, Mateus Prates 22 April 2015 (has links)
Espécies reativas de oxigênio (EROs) são normalmente e continuamente geradas em mitocôndrias, majoritariamente na cadeia de transporte de elétrons (CTE). Harman (1956, 1972 e 1992) teorizou que os radicais livres gerados nas mitocôndrias seriam a principal causa do envelhecimento. De fato, durante o envelhecimento é observado um desequilíbrio entre formação e remoção de EROs, que resulta em estresse redox. Essa condição favorece a formação de lesões oxidadas no DNA, acarretando em mutagênese ou morte celular. Diversos mecanismos moleculares cooperam para o reparo de DNA. Duas vias de reparo de DNA lidam com a maioria das lesões: o reparo por excisão de base (BER) e o reparo por excisão de nucleotídeos (NER). A via BER corrige pequenas modificações de bases que surgem de reações de desaminação, alquilação e oxidação. A via NER é mais versátil, reconhecendo lesões que distorcem a dupla hélice de DNA, como danos induzidos por luz UV e adutos volumos. Pacientes xeroderma pigmentoso (XP-A a XP-G) herdam mutações em um de sete genes que codificam proteínas envolvidas na via NER, ou em um gene que codifica uma polimerase translesão (XP-V). A doença é caracterizada por fotosensibilidade e incidência elevada de neoplasias cutâneas. A proteína XPC atua na etapa de reconhecimento da lesão de DNA na subvia de reparo global do genoma (GG-NER), e sua mutação dá origem aos sintomas clássicos de XP. Novas funções de XPC foram recentemente descritas: i) atuando como cofator na via BER auxiliando as DNA glicosilases OGG1, TDG e SMUG; ii) atuando como cofator transcricional de elementos responsivos a Oct4/Sox2, RXR e PPARα; e iii) na adaptação metabólica na transformação de queratinócitos. Então, propusemo-nos a investigar as relações entre XPC e a manutenção da integridade do DNA mitocondrial, a sensibilidade celular a estresse redox mitocondrial e possíveis alterações bioenergéticas e redox. Para tal, padronizamos um ensaio in vitro de cinética de incisão em DNA plasmidial a fim de investigarmos o possível papel de XPC no reparo de lesões oxidadas em mtDNA. Porém, nossos dados revelaram que XPC não se encontra em mitocôndrias. Apesar disso, células XP-C são mais sensíveis ao tratamento com azul de metileno (AM), antimicina A (AA) e rotenona (ROT), que geram estresse redox mitocondrial. A sensibilidade à AA foi completamente revertida em células corrigidas. Células XP-C apresentaram alterações quanto ao uso dos complexos mitocondriais, com diminuição da taxa de consumo de oxigênio (OCR) via complexo I e um aumento da OCR via complexo II, dependente da presença de XPC. Ademais, a linhagem XP-C apresentou um desequilíbrio redox mitocondrial com maior produção de EROs e menor atividade de GPx. O DNA mitocondrial de células XP-C apresentou níveis elevados de lesão e deleção, que no entanto não retornaram aos níveis encontrados em células selvagens na linhagem XP-C corrigida. Observamos uma acentuada diminuição da expressão de PPARGC1A, um importante regulador de biogênese mitocondrial. Contudo, não foi possível determinar o mecanismo de supressão da expressão de PPARGC1A. Por fim, identificamos que o tipo de mutação em XPC pode estar associado a expressão de PPARGC1A. Esse estudo abre novas possibilidade na investigação do papel de proteína XPC, à parte da instabilidade genômica, na adaptação metabólica e desequilíbrio redox em direção da progressão tumoral. / Mitochondria continuously produce reactive oxygen species (ROS), mainly at the electron transport chain. Harman (1956, 1972 e 1992) proposed that normal aging is driven by increased mitochondrially generated free radicals. Indeed, during the course of aging there is an increased imbalance between formation and removal of ROS, leading to redox stress. This condition favours the formation of oxidized DNA lesions, given rise to mutations and cell death. Several molecular mechanisms cooperates to repair the DNA. Two DNA repair pathways deal with the majority of lesions: base excision repair (BER) and nucleotide excision repair (NER). The BER pathway corrects small base modifications that arise from deamination, alkylation and oxidation reactions. The NER pathway is more versitile, recognizing helix-distorting lesions, such as UV-induced damage and bulky adducts. Xeroderma pigmentosum (XP-A to XP-G) patients inherit mutations in one of seven protein-coding genes involved in NER pathway, or in a gene coding a translesion DNA polymerase (XP-V). Photosensitivity and a thousand-fold increased in the risk of developing cutaneous neoplasms are the main clinical features of XP. XPC protein functions in the recognition step of global genome NER (GG-NER) sub-pathway, and mutations in this gene lead to classical XP symptoms. Recently, it has been described that XPC acts: i) as a cofactor in BER pathway through functional interaction with DNA glycosylases OGG1, TDG and SMUG1; ii) as coactivator in transcription at Oct4/Sox2, RXR and PPARα responsive elements; iii) in metabolic shift during keratinocytes transformation. Thus, we sought to investigate a possible role for XPC in the maintenance of mtDNA integrity, cellular sensitivity to mitochondrial redox stress and eventual bioenergetic and redox changes. For this purpose, we established an in vitro plasmid incision assay to investigate the possible role of XPC in the repair of oxidized lesions in mitochondrial DNA. However, our data revealed that XPC did not localized in mitochondria. Nonetheless, XP-C cells are more sensitive to methylene blue, antimycin A (AA) and rotenone treatment, which induce mitochondrial redox stress. The XP-C sensitivity to AA was completely reverted in XPC-corrected cells. XP-C cells presented altered usage of mitochondrial complexes, with decreased oxygen consumption rate (OCR) via complex I and increased OCR through complex II, an XPC-dependent phenomenon. Furthermore, the XP-C cell line showed mitochondrial redox imbalance with increased ROS production and decrease GPx activity. MtDNA from XP-C cells accumulate lesions and deletions, which, however, were found at similar levels in the corrected cell line. We identified a sharp decrease in the expression of PPARGC1A, a master regulator of mitochondrial biogenesis. Nevertheless, it was not possible to determine the mechanism of suppression of PPARGC1A expression. Finally, our results suggest a possible link between the type of XPC mutation and PPARGC1A expression. This study unfolds new possible roles for XPC, aside from its established roles in genomic instability, in metabolic adaptation and redox imbalance towards tumour progression.
10

Novo papel da proteína XPC na regulação dos complexos da cadeia de transporte de elétrons e desequilíbrio redox / New role of XPC protein in regulating the electron transport chain complexes and redox unbalance

Mateus Prates Mori 22 April 2015 (has links)
Espécies reativas de oxigênio (EROs) são normalmente e continuamente geradas em mitocôndrias, majoritariamente na cadeia de transporte de elétrons (CTE). Harman (1956, 1972 e 1992) teorizou que os radicais livres gerados nas mitocôndrias seriam a principal causa do envelhecimento. De fato, durante o envelhecimento é observado um desequilíbrio entre formação e remoção de EROs, que resulta em estresse redox. Essa condição favorece a formação de lesões oxidadas no DNA, acarretando em mutagênese ou morte celular. Diversos mecanismos moleculares cooperam para o reparo de DNA. Duas vias de reparo de DNA lidam com a maioria das lesões: o reparo por excisão de base (BER) e o reparo por excisão de nucleotídeos (NER). A via BER corrige pequenas modificações de bases que surgem de reações de desaminação, alquilação e oxidação. A via NER é mais versátil, reconhecendo lesões que distorcem a dupla hélice de DNA, como danos induzidos por luz UV e adutos volumos. Pacientes xeroderma pigmentoso (XP-A a XP-G) herdam mutações em um de sete genes que codificam proteínas envolvidas na via NER, ou em um gene que codifica uma polimerase translesão (XP-V). A doença é caracterizada por fotosensibilidade e incidência elevada de neoplasias cutâneas. A proteína XPC atua na etapa de reconhecimento da lesão de DNA na subvia de reparo global do genoma (GG-NER), e sua mutação dá origem aos sintomas clássicos de XP. Novas funções de XPC foram recentemente descritas: i) atuando como cofator na via BER auxiliando as DNA glicosilases OGG1, TDG e SMUG; ii) atuando como cofator transcricional de elementos responsivos a Oct4/Sox2, RXR e PPARα; e iii) na adaptação metabólica na transformação de queratinócitos. Então, propusemo-nos a investigar as relações entre XPC e a manutenção da integridade do DNA mitocondrial, a sensibilidade celular a estresse redox mitocondrial e possíveis alterações bioenergéticas e redox. Para tal, padronizamos um ensaio in vitro de cinética de incisão em DNA plasmidial a fim de investigarmos o possível papel de XPC no reparo de lesões oxidadas em mtDNA. Porém, nossos dados revelaram que XPC não se encontra em mitocôndrias. Apesar disso, células XP-C são mais sensíveis ao tratamento com azul de metileno (AM), antimicina A (AA) e rotenona (ROT), que geram estresse redox mitocondrial. A sensibilidade à AA foi completamente revertida em células corrigidas. Células XP-C apresentaram alterações quanto ao uso dos complexos mitocondriais, com diminuição da taxa de consumo de oxigênio (OCR) via complexo I e um aumento da OCR via complexo II, dependente da presença de XPC. Ademais, a linhagem XP-C apresentou um desequilíbrio redox mitocondrial com maior produção de EROs e menor atividade de GPx. O DNA mitocondrial de células XP-C apresentou níveis elevados de lesão e deleção, que no entanto não retornaram aos níveis encontrados em células selvagens na linhagem XP-C corrigida. Observamos uma acentuada diminuição da expressão de PPARGC1A, um importante regulador de biogênese mitocondrial. Contudo, não foi possível determinar o mecanismo de supressão da expressão de PPARGC1A. Por fim, identificamos que o tipo de mutação em XPC pode estar associado a expressão de PPARGC1A. Esse estudo abre novas possibilidade na investigação do papel de proteína XPC, à parte da instabilidade genômica, na adaptação metabólica e desequilíbrio redox em direção da progressão tumoral. / Mitochondria continuously produce reactive oxygen species (ROS), mainly at the electron transport chain. Harman (1956, 1972 e 1992) proposed that normal aging is driven by increased mitochondrially generated free radicals. Indeed, during the course of aging there is an increased imbalance between formation and removal of ROS, leading to redox stress. This condition favours the formation of oxidized DNA lesions, given rise to mutations and cell death. Several molecular mechanisms cooperates to repair the DNA. Two DNA repair pathways deal with the majority of lesions: base excision repair (BER) and nucleotide excision repair (NER). The BER pathway corrects small base modifications that arise from deamination, alkylation and oxidation reactions. The NER pathway is more versitile, recognizing helix-distorting lesions, such as UV-induced damage and bulky adducts. Xeroderma pigmentosum (XP-A to XP-G) patients inherit mutations in one of seven protein-coding genes involved in NER pathway, or in a gene coding a translesion DNA polymerase (XP-V). Photosensitivity and a thousand-fold increased in the risk of developing cutaneous neoplasms are the main clinical features of XP. XPC protein functions in the recognition step of global genome NER (GG-NER) sub-pathway, and mutations in this gene lead to classical XP symptoms. Recently, it has been described that XPC acts: i) as a cofactor in BER pathway through functional interaction with DNA glycosylases OGG1, TDG and SMUG1; ii) as coactivator in transcription at Oct4/Sox2, RXR and PPARα responsive elements; iii) in metabolic shift during keratinocytes transformation. Thus, we sought to investigate a possible role for XPC in the maintenance of mtDNA integrity, cellular sensitivity to mitochondrial redox stress and eventual bioenergetic and redox changes. For this purpose, we established an in vitro plasmid incision assay to investigate the possible role of XPC in the repair of oxidized lesions in mitochondrial DNA. However, our data revealed that XPC did not localized in mitochondria. Nonetheless, XP-C cells are more sensitive to methylene blue, antimycin A (AA) and rotenone treatment, which induce mitochondrial redox stress. The XP-C sensitivity to AA was completely reverted in XPC-corrected cells. XP-C cells presented altered usage of mitochondrial complexes, with decreased oxygen consumption rate (OCR) via complex I and increased OCR through complex II, an XPC-dependent phenomenon. Furthermore, the XP-C cell line showed mitochondrial redox imbalance with increased ROS production and decrease GPx activity. MtDNA from XP-C cells accumulate lesions and deletions, which, however, were found at similar levels in the corrected cell line. We identified a sharp decrease in the expression of PPARGC1A, a master regulator of mitochondrial biogenesis. Nevertheless, it was not possible to determine the mechanism of suppression of PPARGC1A expression. Finally, our results suggest a possible link between the type of XPC mutation and PPARGC1A expression. This study unfolds new possible roles for XPC, aside from its established roles in genomic instability, in metabolic adaptation and redox imbalance towards tumour progression.

Page generated in 0.0506 seconds