<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head>
Let Σ<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> ≥ 1 and <em>h</em> ≥ 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/2917 |
Date | January 2006 |
Creators | Hays, Christopher |
Publisher | University of Waterloo |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | application/pdf, 633210 bytes, application/pdf |
Rights | Copyright: 2006, Hays, Christopher. All rights reserved. |
Page generated in 0.002 seconds