• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces

Hays, Christopher January 2006 (has links)
<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let &Sigma;<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> &ge; 1 and <em>h</em> &ge; 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>.
2

Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces

Hays, Christopher January 2006 (has links)
<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let &Sigma;<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> &ge; 1 and <em>h</em> &ge; 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>.
3

Branched covers of contact manifolds

Casey, Meredith Perrie 13 January 2014 (has links)
We will discuss what is known about the construction of contact structures via branched covers, emphasizing the search for universal transverse knots. Recall that a topological knot is called universal if all 3-manifold can be obtained as a cover of the 3-sphere branched over that knot. Analogously one can ask if there is a transverse knot in the standard contact structure on S³ from which all contact 3-manifold can be obtained as a branched cover over this transverse knot. It is not known if such a transverse knot exists.
4

Explicit polynomial bounds for Arakelov invariants of Belyi curves / Bornes polynomiales et explicites pour les invariants arakeloviens d'une courbe de Belyi

Javan Peykar, Ariyan 11 June 2013 (has links)
On borne explicitement la hauteur de Faltings d'une courbe sur le corps de nombres algèbriques en son degré de Belyi. Des résultats similaires sont démontré pour trois autres invariants arakeloviennes : le discriminant, l'invariant delta et l'auto-intersection de omega. Nos résultats nous permettent de borner explicitement les invariantes arakeloviennes des courbes modulaires, des courbes de Fermat et des courbes de Hurwitz. En plus, comme application, on montre que l'algorithme de Couveignes-Edixhoven-Bruin est polynomial sous l’hypothèse de Riemann pour les fonctions zeta des corps de nombres. Ceci était connu uniquement pour certains sous-groupes de congruence. Finalement, on utilise nos résultats pour démontrer une conjecture de Edixhoven, de Jong et Schepers sur la hauteur de Faltings d'un revêtement ramifié de la droite projective sur l'anneau des entiers. / We explicitly bound the Faltings height of a curve over the field of algebraic numbers in terms of the Belyi degree. Similar bounds are proven for three other Arakelov invariants: the discriminant, Faltings' delta invariant and the self-intersection of the dualizing sheaf. Our results allow us to explicitly bound these Arakelov invariants for modular curves, Hurwitz curves and Fermat curves. Moreover, as an application, we show that the Couveignes-Edixhoven-Bruin algorithmtime under the Riemann hypothesis for zeta-functions of number fields. This was known before only for certain congruence subgroups. Finally, we utilize our results to prove a conjecture of Edixhoven, de Jong and Schepers on the Faltings height of a branched cover of the projective line over the ring of integers.

Page generated in 0.069 seconds