Return to search

Branched Peptides Targeting HIV-1 RRE RNA and Structure-Activity Relationship Studies of Spinster Homolog 2 Inhibitors

Binding of the Rev protein with Rev Response Element (RRE) RNA present in singly- and unspliced mRNA transcripts is necessary for the replication of HIV-1. This interaction transports the mRNA transcripts from the nucleus to the cytoplasm for translation of the necessary structural and enzymatic proteins for the newly budding virus as well as for providing its genetic material. Given the high rate of mutation in HIV-1, the highly conserved and pertinent RRE RNA is of high interest for pharmaceutical intervention. Consequently, a branched peptide library containing unnatural amino acids was developed to target RRE RNA with the goal of increasing stability, potency, selectivity, and in vivo activity for RRE RNA.

An unnatural amino acid branched peptide library (46,656 sequences) was synthesized and screened against RRE IIB and several hits in the sub-micromolar regime were found. A number of hits demonstrated selectivity in the presence of other RNAs in addition to two hits, 4A5 and 4B3, significantly inhibiting HIV-1 growth in vitro. These peptides inhibited HIV-1 replication in a concentration dependent manner and were demonstrated to be non-toxic. Further analysis of 4A5 and 4B3 via footprinting and SHAPE-MaP experiments determined that these peptides blocked binding of Rev through binding at the primary and secondary binding sites of RRE RNA.

Sphingosine 1-phosphate (S1P) is a signaling molecule that plays a role in various biological processes including immunity, neurogenesis, and angiogenesis. The role S1P plays is largely determined by its location, in which Spinster homolog 2 (spns2) and mfsd2b are the two known transporters. The two transporters exist in different cell types and cellular localizations, with spns2-produced S1P being responsible for trafficking of lymphocytes. As such, spns2 has become of interest for therapeutic targeting in autoimmune and inflammatory diseases. To validate spns2 as a target in pharmaceutical intervention, a series of spns2 inhibitors were developed.

A screening of a library of inhibitors found that compound SLP7120922 demonstrated inhibition of spns2 transport activity. The design, synthesis, and biological evaluation of inhibitors based on SLP7120922 is described. Modifications to the lipophilic tail region were performed with one compound 4.40f discovered to be potent, minimally toxic, and active in vivo. A series of modifications to the head region were then conducted that evaluated linear head derivatives with alkyl-, amide-, and amino acid-based groups. A number of compounds are reported that demonstrate good in vitro activity and minimal toxicity with two compounds, 4.48b and 4.52c, showing favorable in vivo activity in mice. / Doctor of Philosophy / Human immunodeficiency virus (HIV-1) has a high rate of mutation, which commonly leads to the need for many types of medications throughout the lifetime of a patient. In order to design a therapeutic that the virus has a low chance of growing resistance to, a target needs to be chosen with a low mutation rate. One such target is the Rev Response Element (RRE) RNA and it is necessary for the virus to replicate. A protein named Rev binds to RRE RNA in order for RRE to carry out its pertinent function. To block this function we have chosen branched peptides to target the RNA. Peptides are made of the same building blocks of proteins, but are much shorter than proteins. The peptides described here are made up of modified building blocks, called unnatural amino acids. This work describes the generation of an unnatural amino acid branched peptide library and how it was screened in order to find branched peptides that bind RRE RNA. Many peptides were found to bind RRE RNA but two in particular, 4A5 and 4B3, were the best binders that inhibited HIV-1 growth. The remainder of the work describes how these peptides bind to RRE RNA, while demonstrating that they are non-toxic and bind HIV-1 in a concentration dependent manner.

A transporter protein termed Spinster homolog 2 (spns2) transports a signaling molecule known as sphingosine 1-phosphate (S1P). For our immune system to function properly, spns2 has to transport S1P to the appropriate places to signal to immune cells. Unfortunately, this is a problem in autoimmune and inflammatory diseases, such as multiple sclerosis, due to these diseases having an overactive immune system. A potential way to treat these diseases would be by inhibiting spns2. This work describes the design, synthesis, and biological evaluation of spns2 inhibitors. Many compounds were found to inhibit spns2 to a degree, but three compounds, in particular, show potent and effective inhibition in mice.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106784
Date08 June 2020
CreatorsPeralta, Ashley N.
ContributorsChemistry, Santos, Webster L., Tanko, James M., Etzkorn, Felicia A., Lowell, Andrew Nesemann
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0025 seconds