Return to search

Uptake of natural organic matter (NOM) fractions by anion exchangers in demineralisation and drinking water plants

The elimination of natural organic matter (NOM) is an important aim of water treatment in demineralisation plants of power stations. NOM is regarded as corrosion risk factor in the steam water cycle because of its potential to decompose into low-molecular-weight (LMW) acids and carbon dioxide. Further, the removal of NOM is also one of the main objectives in the drinking water production, since it can cause i) colour, taste and odour problems, ii) formation of carcinogen halogenated disinfection by-products (DBPs) after disinfection with chlorine and iii) bacterial growth in the water distribution system.

In earlier studies, it was found that anion exchange is a successful method to remove NOM fractions. However, NOM fractions with low charge density (LMW neutrals and hydrophobic organic carbon (HOC)) and/or large molecular size (biopolymers and particulate organic carbon (POC)) could not be removed in some cases in satisfying quantities. The aim of the present work was to investigate the uptake performance of different anion exchange resins (AERs) in regard to problematic NOM fractions. The AERs differ especially in their functional groups (tertiary versus quaternary amines) and matrix material (polystyrene versus polyacrylic resins). The use of different AERs provides an option to identify possible interactions between adsorbate (NOM fractions) and adsorber (AERs) as well as the mechanism which determine the removal efficiency.

The NOM fraction adsorption onto AERs was studied in equilibrium and fixed-bed experiments with three types of starch with different molecular size distributions (model substances for biopolymer fraction) as well as 2-naphthol (model substance for the LMW neutral fraction) at acidic pH (relevant for water in demineralisation plants of power stations) and neutral pH (covering most raw waters). Furthermore, the NOM fraction uptake from “real” acidic and neutral water samples, obtained from a demineralisation plant of a power station, was estimated for different AERs. Results were discussed in terms of size-exclusion, anion exchange and hydrophilic/hydrophobic repulsion.

In case that size-exclusion influences the NOM uptake onto AERs, it was found that the smaller the size of the NOM molecules and the higher the water content of the AERs, the more effective the uptake is. Thus, for the removal of biopolymers and POC, polyacrylic resins with high water content could be a good choice. Contrary, polystyrene AERs are the most effective resins in the removal of NOM fractions, if no size-exclusion occurs. They seem to be able to uptake more hydrophilic NOM fractions by polar/ionic interactions between acids/acidic components and tertiary/quaternary amines as well as to remove more hydrophobic NOM fractions by π-π stacking and/or hydrophobic interactions on the polystyrene matrix. Further, it was found that the higher the total volume (anion exchange) capacity of an AER, the higher its NOM removal by polar/ionic interactions can be. At acidic pH, weak/medium base AERs have higher total volume (anion exchange) capacities than strong base AERs, whereas, at neutral pH, strong base AERs have the highest ones.

In view of these results, the application of polyacrylic AERs with high water content can be recommended to remove NOM components with large molecular size in demineralisation and drinking water plants. If there is a higher amount of smaller NOM fractions, especially LMW neutrals, than polystyrene weak/medium base AERs should be favoured in demineralisation plants and polystyrene strong base AERs in drinking water treatment plants.

From the engineering point of view, breakthrough curve (BTC) prediction models are important for the design of fixed-bed filter. Therefore, two different BTC model approaches were tested in the present study to describe the single-solute adsorption onto AERs: i) the homogenous surface diffusion model (HSDM) with linear driving force (LDF) approach for surface diffusion, known from activated carbon adsorption, and ii) the Glueckauf/Helfferich formulae as an extension of the height equivalent to a theoretical plate (HETP) model, initially used to describe ion exchange processes. It was found that the Glueckauf/Helfferich approach is not only a suitable tool for the fast calculation of BTCs for ionic components, but it can also successfully be applied, after considering the Freundlich model for the mass balance, for the rapid prediction of BTCs for single-solute organic molecules. For competitive BTC predictions, the ideal adsorbed solution theory (IAST) within the LDF model was applied. All calculated BTCs fit the experimental data in a good manner. Thus, the investigated BTC models can be applied for estimating the breakthrough bed volumes of different AERs to avoid leakage of NOM in the drinking or demineralised water caused by overloading. / Die Entfernung von natürlichen organischen Substanzen (NOM) ist ein wichtiges Ziel für die Herstellung von Reinstwasser im Kraftwerksbetrieb, da diese sich im Wasser/Dampf-Kreislauf zu niedermolekularen Säuren und Kohlenstoffdioxid zersetzen können und so ein potentielles Korrosionsrisiko darstellen. Außerdem ist die Elimination von natürlichen organischen Substanzen einer der Schwerpunkte in der Trinkwasseraufbereitung, da NOM im Trinkwasser folgende Konsequenzen verursachen können i) Farb-, Geschmacks- und Geruchsprobleme, ii) Bildung von kanzerogen halogenierten Desinfektionsnebenprodukten nach der Desinfektion mit Chlor und iii) Bakterienwachstum im Wasserverteilungssystem.

In früheren Untersuchungen wurde festgestellt, dass Anionenaustauscherharze (AERs) die NOM-Fraktionen in der Regel erfolgreich aufnehmen können. Nur NOM-Fraktionen mit geringer Ladungsdichte (niedermolekulare Neutralstoffe und hydrophober organischer Kohlenstoff) und/oder großer Molekülgröße (Biopolymere und partikulärer organischer Kohlenstoff) können unter bestimmten Bedingungen nicht in zufriedenstellender Menge entfernt werden. Ziel dieser Arbeit war es, das Aufnahmeverhalten unterschiedlicher AERs hinsichtlich problematischer NOM-Fraktionen zu untersuchen. Die AERs unterscheiden sich vor allem in ihren funktionellen Gruppen (tertiäre versus quaternäre Amine) und ihrer Matrix (Polystyren- versus Polyacryl-Harze). Die Verwendung unterschiedlicher AERs erlaubt es, mögliche Wechselwirkungen zwischen Adsorbat (NOM-Fraktionen) und Adsorber (AERs) und die Mechanismen, die die NOM-Aufnahme entscheidend bestimmen, zu identifizieren.

Die Entfernung von NOM-Fraktionen durch AERs wurde in Gleichgewichts- und Festbett-versuchen mittels dreier Stärketypen mit unterschiedlicher Molekülgrößenverteilung (Modellsubstanzen für die Biopolymere) und 2-Naphthol (Modellsubstanz für die Neutralstoffe) unter sauren pH-Bedingungen (relevant für die Herstellung von Reinstwasser im Kraftwerksbetrieb) und neutralen pH-Bedingungen (bedeutsam für die meisten Rohwässer) untersucht. Außerdem sollte das Adsorptionsverhalten von AERs bezüglich verschiedener NOM-Fraktionen unter Einsatz von „real“ neutralen und sauren Wasserproben aus einer Wasseraufbereitungsanlage eines Kraftwerksbetriebes eingeschätzt werden.

In dieser Arbeit konnte gezeigt werden, dass falls Größenausschluss die NOM-Aufnahme von AERs beeinflusst, dann ist die Adsorption der NOM-Fraktionen umso größer, je kleiner die NOM-Moleküle sind und je höher der Wassergehalt der AERs ist. Daher kann für die Entfernung von größeren Biopolymeren, der Einsatz von AERs mit Polyacryl-Matrix und hohem Wassergehalt die beste Option sein. AERs mit Polystyren-Matrix besitzen die höchste Aufnahmekapazität für NOM-Fraktionen, falls kein Größenausschluss auftritt. Es scheint für sie möglich zu sein, sowohl hydrophile NOM-Fraktionen durch polare/ionische Wechselwirkungen zwischen NOM Säuren/sauren Komponenten und tertiären/quaternären Aminen aufzunehmen als auch hydrophobe NOM-Fraktionen durch π-π Anziehungen und/oder hydrophobe Interaktionen an die Polystyren-Matrix zu binden. Weiterhin konnte gezeigt werden, dass je höher die Gesamtvolumenkapazität eines AERs, desto größer ist die NOM-Entfernung auf Grund von polaren/ionischen Wechselwirkungen. Es gilt, dass schwach/mittel basische AERs im Vergleich zu stark basischen AERs höhere Gesamtvolumenkapazitäten unter sauren pH-Bedingungen besitzen und stark basische AERs die höchsten Gesamtvolumenkapazitäten unter neutralen pH-Bedingungen aufweisen.

Auf Grund dieser Ergebnisse ist es möglich, die Verwendung von AERs mit Polyacryl-Matrix und hohem Wassergehalt für die Entfernung von NOM-Fraktionen mit großer Molekülgröße in Reinst- und Trinkwasseraufbereitungsanlagen zu empfehlen. Falls es einen höheren Anteil von kleineren NOM-Fraktionen, im Besonderen Neutralstoffen, gibt, sollte die Verwendung von schwach/mittel basischen AERs in Vollentsalzungsanlagen von Kraft-werksbetrieben und stark basischen AERs in Trinkwasseraufbereitungsanlagen bevorzugt werden.

Vor allem im Hinblick auf technische Anwendungen ist es wichtig, Durchbruchskurven (BTC) vorausberechnen zu können. In der vorliegenden Arbeit wurden zwei Modellansätze für die Berechnung von BTCs für die Einkomponentenadsorption getestet: i) das homogene Oberflächendiffusionsmodell mit linearer Triebkraft (LDF), bekannt aus Untersuchungen zur Aufnahme von NOM an Aktivkohle, und ii) die Glueckauf/Helfferich-Formeln, primär verwendet für die Beschreibung von Ionenaustauschprozessen. Es konnte gezeigt werden, dass das Glueckauf/Helfferich-Verfahren nicht nur ein geeignetes Instrument für die schnelle Berechnung von BTCs für ionische Komponenten ist, sondern dass dieses, nach Berücksichtigung des Freundlich-Ansatzes in der Massenbilanz, auch erfolgreich angewendet werden kann, um BTCs für Einkomponentenadsorption von Organika zu berechnen. Für die Vorausberechnung von BTCs für Mehrkomponentensysteme wurde die Theorie der idealen adsorbierten Lösung im LDF-Modell genutzt. Die berechneten BTCs stimmen in guter Qualität mit den experimentell ermittelten BTCs überein. Die Ergebnisse verdeutlichen, dass die untersuchten BTC-Modelle eingesetzt werden können, um Durchbruchspunkte für die jeweiligen AERs zu bestimmen und damit die Gefahr des Schlupfes von NOM ins Trink- bzw. Reinstwasser zu minimieren.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27481
Date29 January 2014
CreatorsPürschel, Madlen
ContributorsEnder, Volker, Worch, Eckhard, Bernhard, Gert, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0043 seconds