Return to search

Segmentation et classification des signaux non-stationnaires : application au traitement des sons cardiaque et à l'aide au diagnostic

Cette thèse dans le domaine du traitement des signaux non-stationnaires, appliqué aux bruits du cœur mesurés avec un stéthoscope numérique, vise à concevoir un outil automatisé et " intelligent ", permettant aux médecins de disposer d'une source d'information supplémentaire à celle du stéthoscope traditionnel. Une première étape dans l'analyse des signaux du cœur, consiste à localiser le premier et le deuxième son cardiaque (S1 et S2) afin de le segmenter en quatre parties : S1, systole, S2 et diastole. Plusieurs méthodes de localisation des sons cardiaques existent déjà dans la littérature. Une étude comparative entre les méthodes les plus pertinentes est réalisée et deux nouvelles méthodes basées sur la transformation temps-fréquence de Stockwell sont proposées. La première méthode, nommée SRBF, utilise des descripteurs issus du domaine temps-fréquence comme vecteur d'entré au réseau de neurones RBF qui génère l'enveloppe d'amplitude du signal cardiaque, la deuxième méthode, nommée SSE, calcule l'énergie de Shannon du spectre local obtenu par la transformée en S. Ensuite, une phase de détection des extrémités (onset, ending) est nécessaire. Une méthode d'extraction des signaux S1 et S2, basée sur la transformée en S optimisée, est discutée et comparée avec les différentes approches qui existent dans la littérature. Concernant la classification des signaux cardiaques, les méthodes décrites dans la littérature pour classifier S1 et S2, se basent sur des critères temporels (durée de systole et diastole) qui ne seront plus valables dans plusieurs cas pathologiques comme par exemple la tachycardie sévère. Un nouveau descripteur issu du domaine temps-fréquence est évalué et validé pour discriminer S1 de S2. Ensuite, une nouvelle méthode de génération des attributs, basée sur la décomposition modale empirique (EMD) est proposée.Des descripteurs non-linéaires sont également testés, dans le but de classifier des sons cardiaques normaux et sons pathologiques en présence des souffles systoliques. Des outils de traitement et de reconnaissance des signaux non-stationnaires basés sur des caractéristiques morphologique, temps-fréquences et non linéaire du signal, ont été explorés au cours de ce projet de thèse afin de proposer un module d'aide au diagnostic, qui ne nécessite pas d'information à priori sur le sujet traité, robuste vis à vis du bruit et applicable dans des conditions cliniques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00713820
Date16 December 2011
CreatorsMoukadem, Ali
PublisherUniversité de Haute Alsace - Mulhouse
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds