• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 13
  • 2
  • Tagged with
  • 33
  • 33
  • 12
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à la fusion des informations : application à la reconnaissance des obstacles dans les images visible et infrarouge

Apatean, Anca Ioana 15 October 2010 (has links) (PDF)
Afin de poursuivre et d'améliorer la tâche de détection qui est en cours à l'INSA, nous nous sommes concentrés sur la fusion des informations visibles et infrarouges du point de vue de reconnaissance des obstacles, ainsi distinguer entre les véhicules, les piétons, les cyclistes et les obstacles de fond. Les systèmes bimodaux ont été proposées pour fusionner l'information à différents niveaux: des caractéristiques, des noyaux SVM, ou de scores SVM. Ils ont été pondérés selon l'importance relative des capteurs modalité pour assurer l'adaptation (fixe ou dynamique) du système aux conditions environnementales. Pour évaluer la pertinence des caractéristiques, différentes méthodes de sélection ont été testés par un PPV, qui fut plus tard remplacée par un SVM. Une opération de recherche de modèle, réalisée par 10 fois validation croisée, fournit le noyau optimisé pour SVM. Les résultats ont prouvé que tous les systèmes bimodaux VIS-IR sont meilleurs que leurs correspondants monomodaux.
2

Fusion d'images multimodales pour la caractérisation du cancer de la prostate / Multimodal image fusion for prostate cancer characterization

Commandeur, Frédéric 19 May 2016 (has links)
Cette thèse s'inscrit dans le contexte de la caractérisation du cancer de la prostate à partir de données d'imagerie multimodale. L'objectif est d'identifier et de caractériser les tumeurs prostatiques à partir d'observation in-vivo, incluant imagerie par résonance magnétique multiparamétrique (IRMm), tomodensitométrie (TDM) et tomographie par émission de positons (TEP), avec une référence biologique sous forme de lames histologiques fournies par l'analyse anatomopathologique de la prostate après prostatectomie radicale. Nous proposons dans un premier temps deux méthodes de recalage afin de réaliser la mise en correspondance des données multimodales dans un référentiel spatial commun défini par l'IRM. Le premier algorithme s'attache à l'alignement des images TDM/TEP et IRM, en combinant information de contour et probabilité de présence de la prostate. Le second a pour objectif de recaler les images histologiques et IRM. En suivant le protocole de Stanford, la pièce de prostatectomie est découpée plus finement fournissant ainsi plus de lames histologiques qu'en routine clinique. Leur correspondance avec les coupes IRM est alors estimée à l'aide de l'information à priori de la découpe et de points saillants (SURF) extraits dans les deux modalités. Cette initialisation sert de base à un recalage affine puis non-rigide basé sur l'information mutuelle et des cartes de distance obtenues à partir des structures intraprostatiques. Dans un second temps, des caractéristiques structurelles (Haar, Gabor, etc) et fonctionnelles (Ktrans, Kep, SUV, TLG, etc) sont extraites en chaque voxel de la prostate à partir des images IRM et TEP. À ces vecteurs de caractéristiques sont associés les labels biologiques correspondant obtenus lors de l'analyse anatomopathologique. Parmi ces labels, nous disposons d'un score d'agressivité appelé score de Gleason et de scores immunohistochimiques quantifiant certains aspects biologiques des tissus, tels que l'hypoxie et la prolifération cellulaire. Finalement, ces couples (vecteurs de caractéristiques/informations biologiques) servent de données d'apprentissage à l’entraînement de classifieurs RF et SVM, utilisés par la suite pour caractériser les tumeurs à partir de nouvelles observations in-vivo. Dans ces travaux, nous réalisons une étude de faisabilité sur neuf patients. / This thesis concerns the prostate cancer characterization based on multimodal imaging data. The purpose is to identify and characterize the tumors using in-vivo observations including mMRI and PET/CT, with a biological reference obtained from anatomopathological analysis of radical prostatectomy specimen providing histological slices. Firstly, we propose two registration methods to match the multimodal images in the the spatial reference defined by MRI. The first algorithm aims at aligning PET/CT images with MRI by combining contours information and presence probability of the prostate. The objective of the second is to register the histological slices with the MRI. Based on the Stanford protocol, a thinner cutting of the radical prostatectomy specimen is done providing more slices compared to clinical routine. The correspondance between histological and MRI slices is then estimated using a combination of the prior information of the slicing and salient points (SURF) extracted in both modalities. This initialization step allows for an affine and non-rigid registration based on mutual information and intraprostatic structures distance map. Secondly, structural (Haar, Garbor, etc) and functional (Ktrans, Kep, SUV, TLG, etc) descriptors are extracted for each prostate voxel over MRI and PET images. Corresponding biological labels obtained from the anatomopathological analysis are associated to the features vectors. The biological labels are composed by the Gleason score providing an information of aggressiveness and immunohistochemistry grades providing a quantification of biological process such as hypoxia and cell growth. Finally, these pairs (features vectors/biological information) are used as training data to build RF and SVM classifiers to characterize tumors from new in-vivo observations. In this work, we perform a feasibility study with nine patients.
3

Algorithms for classifying recorded music by genre

Bergstra, James January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Traitement bio-inspiré de la parole pour système de reconnaissance vocale

Loiselle, Stéphane January 2010 (has links)
Cette thèse présente un traitement inspiré du fonctionnement du système auditif pour améliorer la reconnaissance vocale. Pour y parvenir, le signal de la parole est filtré par un banc de filtres et compressé pour en produire une représentation auditive. L'innovation de l'approche proposée se situe dans l'extraction des éléments acoustiques (formants, transitions et onsets ) à partir de la représentation obtenue. En effet, une combinaison de détecteurs composés de neurones à décharges permet de révéler la présence de ces éléments et génère ainsi une séquence d'événements pour caractériser le contenu du signal. Dans le but d'évaluer la performance du traitement présenté, la séquence d'événements est adaptée à un système de reconnaissance vocale conventionnel, pour une tâche de reconnaissance de chiffres isolés prononcés en anglais. Pour ces tests, la séquence d'événements agit alors comme une sélection de trames automatique pour la génération des observations (coefficients cepstraux). En comparant les résultats de la reconnaissance du prototype et du système de reconnaissance original, on remarque que les deux systèmes reconnaissent très bien les chiffres prononcés dans des conditions optimales et que le système original est légèrement plus performant. Par contre, la différence observée au niveau des taux de reconnaissance diminue lorsqu'une réverbération vient affecter les données à reconnaître et les performances de l'approche proposée parviennent à dépasser celles du système de référence. De plus, la sélection de trames automatique offre de meilleures performances dans des conditions bruitées. Enfin, l'approche proposée se base sur des caractéristiques dans le temps en fonction de la nature du signal, permet une sélection plus intelligente des données qui se traduit en une parcimonie temporelle, présente un potentiel fort intéressant pour la reconnaissance vocale sous conditions adverses et utilise une détection des caractéristiques qui peut être utilisée comme séquence d'impulsions compatible avec les réseaux de neurones à décharges.
5

Analyse automatique des crises d'épilepsie du lobe temporal à partir des EEG de surface / Automatical analysis of temporal lobe epileptic seizures from scalp EEG

Caparos, Matthieu 05 October 2006 (has links)
AL’objectif de la thèse est le développement d’une méthode de caractérisation des crises d’épilepsie du lobe temporal à partir des EEG de surface et plus particulièrement de la zone épileptogène (ZE) à l’origine des crises. Des travaux récents ont démontré une évolution des synchronisations entre structures cérébrales permettant une caractérisation de la dynamique des crises du lobe temporal. La comparaison de différentes méthodes de mesure de relation a permis la mise en évidence des avantages du coefficient de corrélation non-linéaire dans l’étude de l’épilepsie par les EEG de surface. L’exploitation de l’évolution de ce coefficient est à la base de trois applications de traitement automatique du signal EEG : -détermination de la latéralisation de la ZE au départ d’une crise, -recherche d’une signature épileptique, -classification des crises du lobe temporal en deux groupes / The objective of this work was the development of a temporal lobe epilepsy seizures characterization methodology realized through scalp EEG analysis. Recent researches showed an evolution of the synchronizations between cerebral structures, allowing a characterization of dynamic of the seizures. The comparison, between different methods of relation measurement, proved the advantages of the non-linear correlation coefficient in the study of epileptic seizures from scalp EEGs. The characterization of the evolution of this coefficient was used as the base of the development of three signal processing applications : -determination of the side of the Epileptic Zone at the onset of a seizure -research of an epileptic pattern at the seizure onset -classification of the temporal lobe seizures into two groups.
6

Adapting iris feature extraction and matching to the local and global quality of iris image / Comparaison des personnes par l'iris : adaptation des étapes d'extraction de caractéristiques et de comparaison à la qualité locale et globale des images d'entrées

Cremer, Sandra 09 October 2012 (has links)
La reconnaissance d'iris est un des systèmes biométriques les plus fiables et les plus précis. Cependant sa robustesse aux dégradations des images d'entrées est limitée. Généralement les systèmes basés sur l'iris peuvent être décomposés en quatre étapes : segmentation, normalisation, extraction de caractéristiques et comparaison. Des dégradations de la qualité des images d'entrées peuvent avoir des répercussions sur chacune de ses étapes. Elles compliquent notamment la segmentation, ce qui peut engendrer des images normalisées contenant des distorsions ou des artefacts non détectés. De plus, la quantité d'information disponible pour la comparaison peut être réduite. Dans cette thèse, nous proposons des solutions pour améliorer la robustesse des étapes d'extraction de caractéristiques et de comparaison à la dégradation des images d'entrées. Nous travaillons avec deux algorithmes pour ces deux étapes, basés sur les convolutions avec des filtres de Gabor 2D, mais des processus de comparaison différents. L'objectif de la première partie de notre travail est de contrôler la qualité et la quantité d'information sélectionnée pour la comparaison dans les images d'iris normalisées. Dans ce but nous avons défini des mesures de qualité locale et globale qui mesurent la quantité d'occlusions et la richesse de la texture dans les images d'iris. Nous utilisons ces mesures pour déterminer la position et le nombre de régions à exploiter pour l'extraction. Dans une seconde partie de ce travail, nous étudions le lien entre la qualité des images et les performances de reconnaissance des deux algorithmes de reconnaissance décrits ci-dessus. Nous montrons que le second est plus robuste aux images dégradées contenant des artefacts, des distorsions ou une texture pauvre. Enfin, nous proposons un système complet pour la reconnaissance d'iris, qui combine l'utilisation de nos mesures de qualités locale et globale pour optimiser les performances des algorithmes d'extraction de caractéristiques et de comparaison / Iris recognition has become one of the most reliable and accurate biometric systems available. However its robustness to degradations of the input images is limited. Generally iris based systems can be cut into four steps : segmentation, normalization, feature extraction and matching. Degradations of the input image quality can have repercussions on all of these steps. For instance, they make the segmentation more difficult which can result in normalized iris images that contain distortion or undetected artefacts. Moreover the amount of information available for matching can be reduced. In this thesis we propose methods to improve the robustness of the feature extraction and matching steps to degraded input images. We work with two algorithms for these two steps. They are both based on convolution with 2D Gabor filters but use different techniques for matching. The first part of our work is aimed at controlling the quality and quantity of information selected in the normalized iris images for matching. To this end we defined local and global quality metrics that measure the amount of occlusion and the richness of texture in iris images. We use these measures to determine the position and the number of regions to exploit for feature extraction and matching. In the second part, we study the link between image quality and the performance of the two recognition algoritms just described. We show that the second one is more robust to degraded images that contain artefacts, distortion or a poor iris texture. Finally, we propose a complete system for iris recognition that combines the use of our local and global quality metrics to optimize recognition performance
7

Méthodes pour l'analyse de grands volumes d'images appliquées à la détection précoce de la maladie d'Alzheimer par analyse de PDG-PET scans

Kodewitz, Andreas 18 March 2013 (has links) (PDF)
Dans cette thèse, nous explorons de nouvelles méthodes d'analyse d'images pour la détection précoce des changements métaboliques cérébraux causés par la maladie d'Alzheimer (MA). Nous introduisons deux apports méthodologiques que nous appliquons à un ensemble de données réelles. Le premier est basé sur l'apprentissage automatique pour créer une carte des informations de classification pertinente dans un ensemble d'images. Pour cela nous échantillonnons des blocs de voxels de l'image selon un algorithme de Monte-Carlo. La mise en oeuvre d'une classification basée sur ces patchs 3D a pour conséquence importante la réduction significative du volume de patchs à traiter, et l'extraction de caractéristiques dont l'importance est statistiquement quantifiable. Cette méthode s'applique à différentes caractéristiques de l'image et donc est adaptée à des types d'images très variés. La résolution des cartes produites par cette méthode peut être affinée à volonté et leur contenu informatif est cohérent avec les résultats antérieurs basés sur les statistiques sur les voxels obtenus dans la littérature. Le second apport méthodologique porte sur la conception d'un nouvel algorithme de décomposition de tenseur d'ordre important, adapté à notre application. Cet algorithme permet de réduire considérablement la consommation de mémoire et donc évite la surcharge de la mémoire. Il autorise la décomposition rapide de tenseurs, y compris ceux de dimensions très déséquilibrées. Nous appliquons cet algorithme en tant que méthode d'extraction de caractéristiques dans une situation où le clinicien doit diagnostiquer des stades MA précoce ou MCI (Mild Cognitive Impairment) en utilisant la TEP FDG seule. Les taux de classification obtenus sont souvent au-dessus des niveaux de l'état de l'art. Dans le cadre de ces tâches d'analyse d'images, nous présentons notre source de données, les scans de patients retenus et les pré-traitements réalisés. Les principaux aspects que nous voulons prendre en compte sont la nature volumétrique des données, l'information a priori disponible sur la localisation des changements métaboliques et comment l'identification des zones de changements métaboliques participe à la réduction de la quantité de données à analyser et d'extraire des caractéristiques discriminantes. Les méthodes présentées fournissent des informations précises sur la localisation de ces changements métaboliques. Les taux de classification allant jusqu'à 92,6% pour MA et 83,8% pour MCI. En outre, nous sommes capables de séparer les patients MCI stables des MCI patients évoluant vers la MA dans les 2 ans après l'acquisition du PET-scan avec un taux de classification de 84.7%. Ce sont des étapes importantes vers une détection fiable et précoce de la MA.
8

Analyse d'images pour une recherche d'images basée contenu dans le domaine transformé. / Image analysis for content based image retrieval in transform domain

Bai, Cong 21 February 2013 (has links)
Cette thèse s’inscrit dans la recherche d’images basée sur leur contenu. La recherche opère sur des images eprésentéesdans un domaine transformé et où sont construits directement les vecteurs de caractéristiques ou indices. Deux types detransformations sont explorés : la transformée en cosinus discrète ou Discrete Cosine Transform (DCT) et la transforméen ondelettes discrète ou Discrete Wavelet Transform (DWT), utilisés dans les normes de compression JPEG et JPEG2000. Basés sur les propriétés des coefficients de la transformation, différents vecteurs de caractéristiquessont proposés. Ces vecteurs sont mis en oeuvre dans la reconnaissance de visages et de textures couleur.Dans le domaine DCT, sont proposés quatre types de vecteurs de caractéristiques dénommés «patterns» : Zigzag-Pattern,Sum-Pattern, Texture-Pattern et Color-Pattern. Le premier type est l’amélioration d’une approche existante. Les trois derniers intègrent la capacité de compactage des coefficients DCT, sachant que certains coefficients représentent une information de directionnalité. L’histogramme de ces vecteurs est retenu comme descripteur de l’image. Pour une réduction de la dimension du descripteur lors de la construction de l’histogramme il est défini, soit une adjacence sur des patterns proches puis leur fusion, soit une sélection des patterns les plus fréquents. Ces approches sont évaluées sur des bases de données d’images de visages ou de textures couramment utilisées. Dans le domaine DWT, deux types d’approches sont proposés. Dans le premier, un vecteur-couleur et un vecteur–texture multirésolution sont élaborés. Cette approche se classe dans le cadre d’une caractérisation séparée de la couleur et de la texture. La seconde approche se situe dans le contexte d’une caractérisation conjointe de la couleur et de la texture. Comme précédemment, l’histogramme des vecteurs est choisi comme descripteur en utilisant l’algorithme K-means pour construire l’histogramme à partir de deux méthodes. La première est le procédé classique de regroupement des vecteurs par partition. La seconde est un histogramme basé sur une représentation parcimonieuse dans laquelle la valeur des bins représente le poids total des vecteurs de base de la représentation. / This thesis comes within content-based image retrieval for images by constructing feature vectors directly fromtransform domain. In particular, two kinds of transforms are concerned: Discrete Cosine Transform (DCT) andDiscrete Wavelet Transform (DWT), which are used in JPEG and JPEG2000 compression standards. Based onthe properties of transform coefficients, various feature vectors in DCT domain and DWT domain are proposedand applied in face recognition and color texture retrieval. The thesis proposes four kinds of feature vectors in DCTdomain: Zigzag-Pattern, Sum-Pattern, Texture-Pattern and Color-Pattern. The first one is an improved method based onan existing approach. The last three ones are based on the capability of DCT coefficients for compacting energy and thefact that some coefficients hold the directional information of images. The histogram of these patterns is chosen as descriptor of images. While constructing the histogram, with the objective to reduce the dimension of the descriptor, either adjacent patterns are defined and merged or a selection of the more frequent patterns is done. These approaches are evaluated on widely used face databases and texture databases. In the aspect of DWT domain, two kinds of approaches for color texture retrieval are proposed. In the first one, color-vector and multiresolution texture-vector are constructed, which categorize this approach into the context of extracting color and texture features separately. In contrast, the second approachis in the context of extracting color and texture features jointly: multiresolution feature vectors are extracted from luminance and chrominance components of color texture. Histogram of vectors is again chosen as descriptor and using k-means algorithm to divide feature vectors into partitions corresponding to the bins of histogram. For histogram generation, two methods are used. The first one is the classical method, in which the number of vectors that fall into the corresponding partition is counted. The second one is the proposition of a sparse representation based histogram in which a bin value represents the total weight of corresponding basis vector in the sparse representation.
9

Reconstruction spatio-temporelle de la ville de Reims à partir de documents anciens / Spatio-temporal reconstruction of the city of Reims relying on old documents

Younes, Lara 04 December 2014 (has links)
Ces travaux de thèse constituent la première étape d'une réflexion sur la conception d'un système participatif visant la reconstruction et la visualisation de l'espace urbain de la ville de Reims au cours du temps. Dans ces travaux, nous abordons les problèmes de reconnaissance, de reconstruction et géoréférencement spatio-temporel. Ce projet s'appuie sur l'exploitation des sources historiques iconographiques et contextuelles hétérogènes et éparses, dont une collection de cartes postales anciennes et le cadastre actuel géoréférencé.Dans l'objectif d'un travail participatif, il s'avère nécessaire de procurer une aide efficace à l'utilisateur lorsqu'il apporte de nouvelles connaissances dans le système. Une solution robuste doit être apportée en raison de multiples évolutions ou déformations du modèle urbain à travers le temps. Nous avons développé une solution répondant à ce besoin. Elle s'appuie sur des briques de traitement complémentaires, en interaction avec l'utilisateur et s'insère naturellement dans une approche incrémentale de reconstruction. Nous proposons une solution permettant d'extraire, de reconstruire en 3D et de visualiser des bâtiments multi-façades présents dans les cartes postales sans disposer des dimensions réelles des bâtiments. La construction du modèle repose sur l'identification de façades 2D. Elle est obtenue au travers de l'analyse du contenu de l'image. Cette phase d'identification permet de procéder à la reconstruction de modèles 3D, d'extraire des textures 2D associées à ces modèles ainsi que d'enrichir dynamiquement notre système. Les caractéristiques retrouvées dans les images infèrent une estimation sur leur datation, et l'alignement des modèles reconstruits avec le cadastre sur le géoréférencement des bâtiments. Le système ainsi construit constitue une amorce pour la conception d'un système d'information géographique participatif 3D+T permettant aux citoyens de Reims de s'approprier l'histoire de leur ville. / This thesis is the first step toward the design of a Volunteered system for the reconstruction and visualization of urban space in the city of Reims through time. In this work, we address the problems of spatio-temporal recognition, reconstruction and georeferencing. This project relies on the use of heterogeneous and sparse iconographic and contextual historical data, particularly a collection of old postcards and the current cadastral map.With the aim of a Volunteered work, it is necessary to provide useful help to the user when bringing new knowledge into the system. A robust solution is required due to multiple changes of the urban model through time. We have developed a solution to meet those needs. This process fits in an incremental approach of reconstruction and will be completed by a user. We propose to extract, reconstruct and visualize 3D multi-façade buildings from old postcards with no knowledge on their real dimensions. The construction of the models is based on 2D façades identification. It can be obtained through image analysis. This identification allows the reconstruction of 3D models, the extraction of their associated 2D façades textures and the enhancement of the system. The features found in the images infer an estimate of their dating, and the alignment of the models with the cadastral map allows there georeferencing. The system thus constructed is a primer for the design of a Volunteered 3D+T GIS for Reims citizens to capture the history of their city.
10

Segmentation et classification des signaux non-stationnaires : application au traitement des sons cardiaque et à l'aide au diagnostic

Moukadem, Ali 16 December 2011 (has links) (PDF)
Cette thèse dans le domaine du traitement des signaux non-stationnaires, appliqué aux bruits du cœur mesurés avec un stéthoscope numérique, vise à concevoir un outil automatisé et " intelligent ", permettant aux médecins de disposer d'une source d'information supplémentaire à celle du stéthoscope traditionnel. Une première étape dans l'analyse des signaux du cœur, consiste à localiser le premier et le deuxième son cardiaque (S1 et S2) afin de le segmenter en quatre parties : S1, systole, S2 et diastole. Plusieurs méthodes de localisation des sons cardiaques existent déjà dans la littérature. Une étude comparative entre les méthodes les plus pertinentes est réalisée et deux nouvelles méthodes basées sur la transformation temps-fréquence de Stockwell sont proposées. La première méthode, nommée SRBF, utilise des descripteurs issus du domaine temps-fréquence comme vecteur d'entré au réseau de neurones RBF qui génère l'enveloppe d'amplitude du signal cardiaque, la deuxième méthode, nommée SSE, calcule l'énergie de Shannon du spectre local obtenu par la transformée en S. Ensuite, une phase de détection des extrémités (onset, ending) est nécessaire. Une méthode d'extraction des signaux S1 et S2, basée sur la transformée en S optimisée, est discutée et comparée avec les différentes approches qui existent dans la littérature. Concernant la classification des signaux cardiaques, les méthodes décrites dans la littérature pour classifier S1 et S2, se basent sur des critères temporels (durée de systole et diastole) qui ne seront plus valables dans plusieurs cas pathologiques comme par exemple la tachycardie sévère. Un nouveau descripteur issu du domaine temps-fréquence est évalué et validé pour discriminer S1 de S2. Ensuite, une nouvelle méthode de génération des attributs, basée sur la décomposition modale empirique (EMD) est proposée.Des descripteurs non-linéaires sont également testés, dans le but de classifier des sons cardiaques normaux et sons pathologiques en présence des souffles systoliques. Des outils de traitement et de reconnaissance des signaux non-stationnaires basés sur des caractéristiques morphologique, temps-fréquences et non linéaire du signal, ont été explorés au cours de ce projet de thèse afin de proposer un module d'aide au diagnostic, qui ne nécessite pas d'information à priori sur le sujet traité, robuste vis à vis du bruit et applicable dans des conditions cliniques.

Page generated in 0.179 seconds