Return to search

Pulsed-Power Busbar Design for High-Powered Applications

The use of high-powered electrical energy systems requires an efficient and capable means to move electrical energy from one location to another while reducing energy losses. This paper describes the design and construction process of a high-powered busbar system that is to be implemented in pulsed-power applications. In order to obtain a robust system capable of handling in excess of 25kJ, both mechanical and electrical analyses were performed to verify a capable design. The following methodology describes how the Lorentz force was balanced with mechanical forces during the design process and then validated after construction was completed using the fundamental Maxwell equations and computer simulations. Main focuses include handling of EMF, high current density concentrations, and overall mechanical stability of the system and how these effects determine the physical design and implementation. In the end, a repeatable methodology is presented in the form of a design process that can be implemented in any system given the design criteria. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71329
Date08 June 2016
CreatorsAlexander, Eric Douglas
ContributorsMechanical Engineering, Odendaal, Willem G., Wicks, Alfred L., Fuller, Christopher R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds