This work presents optogenetics and real-time computer vision techniques to non-invasively manipulate and monitor neural activity with high spatiotemporal resolution in awake behaving Caenorhabditis elegans. These methods were employed to dissect the nematode's mechanosensory and motor circuits and to elucidate the neural control of wave propagation during forward locomotion. Additionally, similar computer vision methods were used to automatically detect and decode fluorescing DNA origami nanobarcodes, a new class of fluorescent reporter constructs.
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/9276708 |
Date | 19 July 2012 |
Creators | Leifer, Andrew |
Contributors | Hogle, James M. |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0019 seconds