Return to search

Profitability = f(G) : Computational Thermodynamics, Materials Design and Process Optimization

The thesis starts by giving a motivation to materials modeling as a way to increase profitability but also a possibility decrease the environmental impact. Fundamental concepts of relevance for this work are introduced, this include the materials genome, ICME and of course the CALPHAD method. As a demonstration promising results obtained by an ICME approach using genetic algorithms and CALPHAD on the vacuum degassing process are presented. In order to make good predictive calculations and process models it is important to have good thermodynamic descriptions. Thus most part of the work has concerned the thermodynamic assessments of systems of importance for steelmaking, corrosion and similar processes. The main focus has been the assessment of sulfur-containing systems and thermodynamic descriptions of the Fe-Mn-Ca-Mg-S, Fe-Ca-O-S, Fe-Mg-O and Mg-Mn-O systems are presented. In addition, heat capacity measurements of relevance for the Mg-Mn-O system have been performed. To summarize the efforts some application examples concerning thermodynamic calculations related to steelmaking and inclusion formation are shown. / <p>QC 20160829</p> / COMPASS

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-191243
Date January 2016
CreatorsDilner, David
PublisherKTH, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds