A ampla distribuição das ureases na natureza é um indício da grande importância desta enzima para os mais diferentes organismos, fato que levou diversos pesquisadores ao redor do globo a dedicarem-se exclusivamente à caracterização destas enzimas. Apesar de ser uma proteína estudada ha quase um século, até o início deste trabalho apenas três ureases possuíam suas estruturas cristalográficas elucidadas e todas de origem bacteriana. A urease de Canavalia ensiformis (JBU) foi a primeira enzima desta família a ser descrita, em 1926 e ainda assim, apesar dos incansáveis esforços de diferentes grupos na caracterização estrutural e biológica desta proteína, sua estrutura cristalográfica só foi obtida no primeiro semestre de 2010. Tentativas anteriores de obtenção da estrutura cristalográfica de JBU falharam devido a baixa qualidade dos cristais formados por esta proteína através de técnicas convencionais de cristalização. Desta forma, na primeira parte deste trabalho relatamos o uso de técnicas alternativas de cristalização como o uso de ligantes ou aditivos, proteólise in situ e modificação química de resíduos de amino ácidos na obtenção de cristais de JBU com qualidade superior aos anteriormente obtidos, validando o uso destas metodologias na cristalização de proteínas recalcitrantes. Os cristais aqui obtidos, apesar de apresentarem qualidade superior aos previamente descritos na literatura, não foram otimizados ao ponto de obtenção da estrutura cristalográfica da enzima A atividade enzimática das ureases é dependente da presença de dois íons de níquel precisamente incorporados em seus sítios ativos. A biossíntese deste sítio ativo, bem como a incorporação de níquel na enzima consiste de um processo altamente regulado, cuja ocorrência depende da participação de diversas chaperonas (proteínas acessórias) agindo como reguladores pós traducionais. Apesar dos esforços já realizados, o mecanismo de ativação de ureases ainda permanece obscuro. Até hoje, os estudos concentraram-se em ureases de origem microbiana, sendo a informação disponível ainda extremamente limitada. Menos ainda é conhecido para o sistema de ativação de ureases de origem vegetal. Na segunda parte deste trabalho relatamos pioneiramente as primeiras tentativas de produção e caracterização de proteínas acessórias de origem vegetal. As proteínas UreD, UreF e UreG de soja (Glycine max) foram clonadas e expressas em sistema bacteriano. A proteína UreG de soja, purificada diretamente da planta e também produzida de forma recombinante em E.coli, foi caracterizada quanto a sua estrutura, capacidade de ligação a metais e atividade GTPásica, descrevendo algumas características nunca antes observadas para outras proteínas da mesma família. Também descrevemos o primeiro sucesso na obtenção da proteína acessória UreF tipo 5 selvagem na sua forma solúvel e a caracterização estrutural desta proteína foi realizada. As proteínas acessórias de soja também foram caracterizadas em relação ao seu perfil de expressão em diferentes tecidos, ao longo do desenvolvimento da planta, utilizando PCR em tempo real. Observamos uma grande variação dos níveis de expressão dos diferentes mRNAs nos tecidos avaliados. Uma possível relação entre estes níveis de expressão e a atividade ureásica de cada tecido foi investigada, visando uma melhor compreensão da dinâmica entre a expressão e atividade das proteínas responsáveis pela ativação das ureases vegetais. / The wide distribution of ureases in nature is an indication of the importance of this enzyme for the most different organisms, fact that lead researchers all over the world to dedicate their careers exclusively to the study of these enzymes. Despite of being studied for almost a century, until last year only three crystallographic structures of ureases had been solved, all from bacterial source. The urease from Canavalia ensiformis (JBU) was the first member of this family to be described, in 1926 and still, despite the restless efforts from different research groups on the structural and biological characterization of this protein, its structure was not solved until the beginning of 2010. Early trials to obtain the crystallographic structure of JBU have failed due to the poor quality crystals formed by this protein using conventional crystallization techniques. In this panorama, the first part of this work describes the use of alternative crystallization techniques, such as the use of ligands, in situ proteolisis and chemical modification of amino acid residues, for the obtention of JBU crystals with superior quality than the ones previously described in the literature, validating the use of such techniques on the crystallization of recalcitrant proteins. The crystals obtained here, despite of their superior characteristics, were not refined to the point of generating the crystallographic structure of JBU. The enzymatic activity of ureases is dependent of the presence of nickel ions precisely incorporated in their active sites. The bioassembly of these active sites, including the nickel incorporation, consist of a tightly regulated process, whose occurence depends on the participation of several chaperones (accessory proteins) that work as post-translational regulators. A great deal of effort has already been done on the study of the urease’s activation process; however its details remain unclear. To date, all work done concentrates on the study of microbial ureases, but the available information is very limited and even less information is available for the plant ureases activation process. The second part this work presents the first trials on the production and characterization of plant urease accessory proteins. The proteins UreD, UreF and UreG from soybean (Glycine max) were cloned and expressed in bacterial system. The soybean UreG protein, purified directly from the plant seeds and also produced in recombinant fashion in Escherichia coli, was characterized regarding its structure, metal biding capacity and GTPasic activity, describing a few characteristics never before observed for other proteins of the same family. It is also described the first success on the obtention of the wild type ureF accessory protein in its soluble form and a structural characterization was performed. All accessory proteins from soybean were also characterized for its expression profile in several tissues during its development utilizing real-time PCR and a correlation with the levels of urease activity were investigated. Altogether, these data improve the understanding of multiple factors involved on the urease activation process.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/139174 |
Date | January 2011 |
Creators | Guerra, Rafael Real |
Contributors | Carlini, Celia Regina Ribeiro da Silva |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds