Return to search

Immune regulation in mouse models of allergic asthma

Allergic asthma is an immunological disease, mediated by CD4+ Th2 cells, and its prevalence has increased over recent decades. Features of allergic asthma include airway hyperresponsiveness (AHR), airway eosinophilia, excessive airway mucus production, and increased IgE and Th2 cytokine levels. Airway remodeling with pulmonary fibrosis is noted in the progress of asthma. In this thesis, a murine model of allergic asthma was used to investigate the effect of cyclophosphamide (CY) on asthma and the involvement of regulatory T cells (Treg), and the role of Granulocyte-macrophage colony stimulating-factor (GM-CSF) in allergic asthma by using GM-CSF knockout mice. CY is a cytotoxic agent, which paradoxically augments several immune responses. The first part of this thesis was aimed to study the effects of CY in a murine model of allergic airway inflammation. BALB/c mice were immunized with ovalbumin (OVA) on days 0 and 14, and challenged with aerosolized OVA from days 21 to 27. Some mice additionally received CY on days -2 and 12. In the CY-treated animals, pronounced worsening of inflammatory features was noted, including increases in eosinophil infiltration, epithelial thickness, mucus occlusion and eosinophil numbers in bronchoalveolar lavage fluid (BALF). Increased total and OVA-specific serum IgE were also noted in the CY-treated animals. In cell cultures from peritracheal lymph nodes, the Th2 cytokines IL-4 and IL-5 were elevated in animals treated with CY. It was hypothesized that the effects of CY could be caused by reduced immunosuppression mediated by Treg. mRNA expression of the immunosuppressive cytokines IL-10 and TGF-beta was reduced in the lungs of CY-treated mice. The expression of FoxP3, a marker of naturally occurring Treg, was significantly reduced in spleens, thymuses and peritracheal lymph nodes after the second injection of CY, and in the lung tissue after allergen challenge in CY-treated mice. Furthermore, lung IL-10-producing CD4+ T cells and CTLA-4+-bearing CD4+ T cells were reduced after allergen aerosol challenge in CY-treated mice. Thus CY worsened the features of allergic pulmonary inflammation in this model, in association with increased production of IgE and Th2 cytokines. The reduction in expression of FoxP3 and immunosuppressive cytokines by CY suggests that toxicity to Treg may contribute to the increased inflammation. GM-CSF plays a role in the growth, development, and maturation of bone marrow hemopoietic cells into mature blood cells, and has been proposed to be involved in potentiating the function of inflammatory cells in allergic inflammation. In the second part of this thesis, GM-CSF knockout (KO) mice were used to investigate the role of GM-CSF. In allergic KO mice, airway eosinophils were only shown in the perivascular, but not peribronchial areas in the lung, compared to the allergic wild-type (WT) mice in which eosinophil infiltration appeared in both areas. Eosinophil numbers were drastically reduced in the bronchoalveolar lavage fluid (BALF) of KO mice. IL-5 production in the lung tissue and BALF in allergic KO mice was reduced; similar results were also found in peritracheal draining lymph nodes after in vitro stimulation assays. However, IL-4 and IL-13 production, airway hyperresponsiveness (AHR), and serum IgE production were not affected in allergic KO mice. Surprisingly, lung IFN-gamma mRNA and BALF levels were increased in allergic KO mice. Lung mRNA levels of CCR3, a key chemokine receptor on eosinophils, were significantly reduced in allergic KO mice, whereas expression of the chemokines eotaxin and RANTES were at similar levels in allergic KO and WT mice. Lung mRNA levels of the IFN-gamma-inducible chemokines Mig (CXCL9) and IP-10 (CXCL10), which are antagonists of CCR3, and their receptor CXCR3 were increased in allergic KO mice, compared with allergic WT mice. Data obtained from flow cytometry showed more eosinophils survived in the lung of WT mice than KO mice. Another allergy model, a peritoneal allergy model was performed to investigate inflammation in a different model. Leukocyte subpopulations such as neutrophils, eosinophils, macrophages, and lymphocytes were reduced in the peritoneal lavage fluid of allergic KO mice. The findings revealed that GM-CSF is essential for IL-5 production, pulmonary airway eosinophilia and eosinophil survival. In the absence of GM-CSF, over-production of IFN-???? may induce chemokines, including Mig and IP-10, which are antagonists for CCR3 and may reduce airway eosinophil infiltration. In this thesis, a murine model of allergic asthma has been used to obtain novel findings on the regulation of allergic inflammation. The results with CY are relevant to the treatment of asthma patients with CY and other cytotoxic agents. The findings in the GM-CSF KO mice suggest that GM-CSF is a potential therapeutic target in asthma, and that in assessment of new therapeutic agents for asthma, effects on GM-CSF should be considered.

Identiferoai:union.ndltd.org:ADTP/257222
Date January 2006
CreatorsSu, Yung-Chang, University of New South Wales & Garvan Institute of Medical Research. St. Vincent's Clinical School, UNSW
PublisherAwarded by:University of New South Wales & Garvan Institute of Medical Research. St. Vincent's Clinical School
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Yung-Chang Su, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0015 seconds