Return to search

Design and Modelling of a Container for Optimal Flow Rate and Wastewater Purification

Industries are becoming more aware of how they use water in their production process. In many cases, they release wastewater back into the water supply untreated, which can cause adverse side effects to the ecosystem. A sustainable environment requires efficient water purification. One approach to purify wastewater uses rotating bed reactors. An impeller filled with catalyst pellets that absorb the pollutants spins in the contaminated fluid. The inertial forces from the spinning impeller propel the contaminated water through the packed bed and purify it. In this study, we used one of these rotating bed reactors. However, the motors that drive these impellers can be bulky and may not be compatible with some tanks or environments. To solve this problem, we designed, constructed, and tested a container around the impeller that provides maximal outflow, using only the impellers pumping capability. We also developed a CFD simulation of the container to analyze the internal flows and forces. Because the flow generated by the rotating impeller displaces the fluid in a radial direction, the design works as a custom-made centrifugal pump. We constructed the container using plastic and wood with an outlet nozzle made of metal. The container's pump capability was around 2.5 liters per second when the impeller spun at 300 RPM. The developed CFD simulations gave a higher flow rate at 3.1 liters/second but overall helped shed light on the internal forces happening inside the container during high RPM testing. The design could generate a sufficient outflow of fluids, converting kinetic fluid energy to fluid pressure energy at the outlet, causing a pump effect. Overall, the design proved sturdy and could handle the forces occurring inside the container. The implementation of this design could allow industries to more efficiently and ergonomically utilize the purifying capabilities of the RBR in otherwise complex scenarios. By purifying wastewater before releasing it back into the water supply, we can take immediate action in achieving a sustainable environment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-183669
Date January 2021
CreatorsStenlund, Olle
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds