Les développements continus en micro-spectroscopie vibrationnelle IR et en analyse numérique de données multidimensionnelles ont permis récemment l'émergence de l'histologie spectrale. A l'échelle tissulaire et sur une base biomoléculaire, cette nouvelle approche représente un outil prometteur pour une meilleure analyse et caractérisation de différents états physiopathologiques, et potentiellement une aide au diagnostic clinique. Dans ce travail, en utilisant un modèle tissulaire de côlon normal chez la Souris et chez l’Homme, nous avons apporté des améliorations à la chaîne de traitements des données afin d'automatiser et d'optimiser cette histologie spectrale.En effet, dans un premier temps, le développement d’une double application hiérarchique d'indices de validité a permis de déterminer le nombre optimal de classes nécessaire à une caractérisation complète des structures histologiques. Dans un second temps, cette méthode a été généralisée à l'échelle interindividuelle par couplage d'un prétraitement par EMSC (Extended Multiplicative Signal Correction) et d'une classification non-supervisée k-Means; ce couplage étant appliqué conjointement à toutes les images spectrales IR. Enfin, compte tenu de l'essor des métaheuristiques et de leur capacité à résoudre des problèmes complexes d'optimisation numérique, nous avons transposé un algorithme mémétique aux données spectrales IR. Ce nouvel algorithme se compose d'un algorithme génétique et d'un raffinement par classification non-supervisée k-Means. Comparé aux méthodes classiques de clustering, cet algorithme mémétique appliqué aux images spectrales IR, a permis de réaliser une classification non-supervisée optimale et indépendante de l'initialisation. / Recent developments in IR vibrational microspectroscopy and numerical multidimensional analysis have led to the emergence of spectral histology. At the tissue level, this new approach represents an attractive tool for a better analysis and characterization of pathophysiological states and for diagnostic challenges. Here, using normal murine and human colon tissues, data processing steps have been improved for automating and optimizing this spectral histology. First, the development of a hierarchical double application of validity indices permitted to determine the optimal number of clusters that correctly identified the different colon histological components. Second, this method has been improved to perform spectral histology at the inter-individual level. For this, EMSC (Extended Multiplicative Signal Correction) preprocessing has been successfully combined to k-Means clustering. Finally, given the ability of metaheuristics to solve complex optimization problems, a memetic algorithm has been developed for IR spectral data clustering. This algorithm is composed of a genetic algorithm and a k-Means clustering refinement. Compared with conventional clustering methods, our memetic algorithm allowed to generate an optimal and initialization-independent clustering.
Identifer | oai:union.ndltd.org:theses.fr/2016REIMS040 |
Date | 27 January 2016 |
Creators | Nguyen, Thi Nguyet Que |
Contributors | Reims, Jeannesson, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds