Climate change has, in recent decades, warmed the climate and changed carbondynamics in land and water systems. For example, temperature and precipitation canchange carbon dynamics and cause largely unknown consequences. This researchuses data from a unique measuring station near Kattestrupeforsen, Jämtland, Sweden, in order to answer the question of how the pCO2 (ppm) concentration of the water in the local area reacts to changes in the factors of air/water temperature, solar irradiation, precipitation, turbidity, water level and water inflow into the area. This was analysed using a visual analysis of the peaks that occur in the pCO2 and a statistical regression analysis of peak pCO2 events and for each yearly quarter as well as for the identified peak events. Moreover, the limited amount of available turbidity data was visually analysed to comprehend how it correlates with the pCO2 values. The results indicate that the turbidity data available has no visible correlation, possibly due to a lack in data. Temperature data appeared to be responsible for some of the variation seen, although likely more as a conditional value. Irradiation and precipitation data gave inconsequent results and are not deemed likely to influence the peaks in pCO2 in the time scale analysed. Water level and streamflow showed the most stable and significant correlation of all parameters analysed, although they remained relatively inconsistentin their ability to explain pCO2 peaks seen. / <p>2024-03-06</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-51290 |
Date | January 2023 |
Creators | Cuijpers, David Leon |
Publisher | Mittuniversitetet, Institutionen för naturvetenskap, design och hållbar utveckling (2023-) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds