Return to search

k-árvores de custo mínimo / Minimum cost k-trees

Esta dissertação trata do problema da k-árvore de custo mínimo (kMST): dados um grafo conexo G, um custo não-negativo c_e para cada aresta e e um número inteiro positivo k, encontrar uma árvore com k vértices que tenha custo mínimo. O kMST é um problema NP-difícil e portanto não se conhece um algoritmo polinomial para resolvê-lo. Nesta dissertação discutimos alguns casos em que é possível resolver o problema em tempo polinomial. Também são estudados algoritmos de aproximação para o kMST. Entre os algoritmos de aproximação estudados, apresentamos a 2-aproximação desenvolvida por Naveen Garg, que atualmente é o algoritmo com melhor fator de aproximação. / This dissertation studies the minimum cost k-tree problem (kMST): given a connected graph G, a nonnegative cost function c_e for each edge e and a positive integer k, find a minimum cost tree with k vertices. The kMST is an NP-hard problem, which implies that it is not known a polynomial algorithm to solve it. In this dissertation we discuss some cases that can be solved in polynomial time. We also study approximation algorithms for the kMST. Among the approximation algorithms we present the 2-approximation developed by Naveen Garg, which is currently the algorithm with the best approximation factor.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28052012-091652
Date11 June 2010
CreatorsMarcio Takashi Iura Oshiro
ContributorsJose Coelho de Pina Junior, Fabio Henrique Viduani Martinez, Yoshiko Wakabayashi
PublisherUniversidade de São Paulo, Ciência da Computação, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds