Return to search

Models and algorithms for the combinatorial optimization of WLAN-based indoor positioning system / Modèles et algorithmes pour l'optimisation combinatoire de systèmes de localisation indoor basés sur les WLAN

La localisation des personnes et des objets à l’intérieur des bâtiments basée sur les réseaux WLAN connaît un intérêt croissant depuis quelques années ; ce système peut être un parfait complément pour fournir des informations de localisation statique ou dynamique dans des environnements où les techniques de positionnement telles que GPS ne sont pas efficaces. Le manuscrit de thèse propose une nouvelle approche pour définir un système WLAN de positionnement indoor (WLAN-IPS) comme un problème d'optimisation combinatoire afin de garantir à la fois une qualité de communication et une minimisation de l'erreur de positionnement via le réseau. Cette approche est caractérisée par plusieurs questions difficiles que nous abordons en trois étapes.Dans un premier temps, nous avons conçu un réseau WLAN-IPS et mis en œuvre une plateforme de test. Nous avons examiné la performance du système sous diverses contraintes expérimentales et nous nous sommes penchés sur l'analyse des relations entre l'erreur de positionnement et les facteurs environnementaux externes. Ces relations ont permis de proposer des indicateurs pour évaluer l'erreur de positionnement. Ensuite nous avons proposé un modèle physique qui définit tous les paramètres majeurs rencontrés en WLAN-IPS à partir de la littérature. L'objectif initial des infrastructures WLAN étant de fournir un accès radio de qualité au réseau, nous avons introduit un objectif supplémentaire qui est de minimiser l'erreur de localisation dans le contexte IPS. Deux indicateurs principaux ont été définis afin d'évaluer la qualité de service (QoS) et l'erreur de localisation pour LBS (Location-Based Services). Enfin après avoir défini la formulation mathématique du problème d'optimisation et les indicateurs clés de performance, nous avons proposé un algorithme mono-objectif et un algorithme multicritère basés sur Tabu Search et Variable Neighborhood Search pour fournir des bonnes solutions en temps raisonnable. Les simulations montrent que ces deux algorithmes sont très efficaces pour le problème d'optimisation que nous avons posé. / Indoor Positioning Systems (IPS) using the existing WLAN have won growing interest in the last years, it can be a perfect supplement to provide location information of users in indoor environments where other positioning techniques such as GPS, are not much effective. The thesis manuscript proposes a new approach to define a WLAN-based indoor positioning system (WLAN-IPS) as a combinatorial optimization problem to guarantee the requested communication quality while optimizing the positioning error. This approach is characterised by several difficult issues we tackled in three steps.At first, we designed a WLAN-IPS and implemented it as a test framework. Using this framework, we looked at the system performance under various experimental constraints. Through these experiments, we went as far as possible in analysing the relationships between the positioning error and the external environmental factors. These relationships were considered as evaluation indicators of the positioning error. Secondly, we proposed a model that defines all major parameters met in the WLAN-IPS from the literature. As the original purpose of the WLAN infrastructures is to provide radio communication access, we introduced an additional purpose which is to minimize the location error within IPS context. Two main indicators were defined in order to evaluate the network Quality of Service (QoS) and the positioning error for Location-Based Service (LBS). Thirdly, after defining the mathematical formulation of the optimisation problem and the key performance indicators, we proposed a mono-objective algorithm and a multi-objective algorithm which are based on Tabu Search metaheuristic to provide good solutions within a reasonable amount of time. The simulations demonstrate that these two algorithms are highly efficient for the indoor positioning optimization problem.

Identiferoai:union.ndltd.org:theses.fr/2012BELF0177
Date20 April 2012
CreatorsZheng, You
ContributorsBelfort-Montbéliard, Caminada, Alexandre, Baala, Oumaya
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds