Return to search

SEGMENTAÇÃO AUTOMÁTICA DE NÓDULOS PULMONARES COM GROWING NEURAL GAS E MÁQUINA DE VETORES DE SUPORTE / AUTOMATIC SEGMENTATION OF PULMONARY NODULES WITH GROWING NEURAL GAS VECTOR MACHINE AND SUPPORT

Made available in DSpace on 2016-08-17T14:53:07Z (GMT). No. of bitstreams: 1
Stelmo Magalhaes Barros Netto.pdf: 2768924 bytes, checksum: bf6f24780a03adb4f2940b818c95f293 (MD5)
Previous issue date: 2010-02-10 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Lung cancer is still one of the most frequent types throughout the world. Its diagnosis is very difficult because its initial morphological characteristics are not well defined, and also because of its location in relation to the lung. It is usually detected late, fact that causes a large lethality rate. Facing these difficulties, many researches are done, concerning both detection and diagnosis. The objective of this work is to propose a methodology for computer-aided automatic lung nodule detection. The return of the development of such methodology is that its application will aid the doctor in the simultaneous detection of several nodules present in computerized tomography images. The methodology developed for automatic detection of lung nodules involves the use of a method of competitive learning, called Growing Neural Gas (GNG). The methodology still consists in the reduction of the volume of interest, by the use of techniques largely used in thorax extraction, lung extraction and reconstruction. The next stage is the application of the GNG in the resulting volume of interest, that together with the separation of the nodules from the various structures present in the lung form the segmentation stage, and, finally, through texture and geometry measurements, the classification as either nodule or non-nodule is performed. The methodology guarantees that nodules of reasonable size are found with sensibility of 86%, specificity of 91%, what results in accuracy of 91%, in average, for ten training and test experiments, in a sample of 48 nodules occurring in 29 exams. The false-positive per exam rate was of 0.138, for the 29 analyzed exams. / O câncer de pulmão ainda é um dos mais incidentes em todo mundo. Seu diagnóstico é de difícil realização, devido as suas características morfológicas iniciais não estarem bem definidas e também por causa da sua localização em relação ao pulmão. É geralmente detectado tardiamente, que tem como conseqüência uma alta taxa de letalidade. Diante destas dificuldades muitas pesquisas são realizadas, tanto em relação a sua detecção, quanto a seu diagnóstico. O objetivo deste trabalho é propor uma metodologia de detecção automática do nódulo pulmonar com o auxílio do computador. O ganho com o desenvolvimento desta metodologia, é que sua implementação auxiliará ao médico na detecção simultânea dos diversos nódulos presentes nas imagens de tomografia computadorizada. A metodologia de detecção de nódulos pulmonares desenvolvida envolve a utilização de um método da aprendizagem competitiva, chamado de Growing Neural Gas (GNG). A metodologia ainda consiste na redução do volume de interesse, através de técnicas amplamente utilizadas na extração do tórax, extração do pulmão e reconstrução. A etapa seguinte é a aplicação do GNG no volume de interesse resultante, que em conjunto com a separação do nódulo das diversas estruturas presentes formam a etapa de segmentação, e por fim, é realizada a classificação das estruturas em nódulo e não-nódulo, por meio das medidas de geometria e textura. A metodologia garante que nódulos com tamanho razoável sejam encontrados com sensibilidade de 86%, especificidade de 91%, que resulta em uma acurácia de 91%, em média, para dez experimentos de treino e teste, em uma amostra de 48 nódulos ocorridos em 29 exames. A taxa de falsos positivos por exame foi de 0,138, para os 29 exames analisados.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede/431
Date10 February 2010
CreatorsNetto, Stelmo Magalhães Barros
ContributorsSilva, Aristófanes Corrêa
PublisherUniversidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, BR, Engenharia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0058 seconds