Return to search

Study of gradon confinements in graded elastic and plasmonic lattices. / 弹性和等离子体梯度子禁闭研究 / CUHK electronic theses & dissertations collection / Study of gradon confinements in graded elastic and plasmonic lattices. / Tan xing he deng li zi ti ti du zi jin bi yan jiu

Controlling fields and properties has attracted ever increasing interest over past decades due to the rapid advancement of nanofabrication techniques. In the field of nano-optics, to overcome the limit of signal processing speed and device scale of traditional electronic devices, optical devices using photon as the signal carriers have been chosen as the potential candidates. However, the diffraction limit of light has limited the integration of the micro-meter photonic components into electronic chips. Plasmonics offer the possibility to control electromagnetic fields at the subwavelength scale. Moreover , this controlling become tunable by introducing gradient into the material and/or structure, i.e., taking the concept of functionally graded materials (FGM) to design materials. / Gradon confinements in graded materials and/or systems open a door for tunable fields-controlling, which have potential applications in a variety of fields. Our research methods and results provide an effective way to understand field localization in a variety of systems, and they can be applied to design and manufacture thermal devices and even on-chip plasmonic-optical devices. / Gradon confinements, or referred as frequency-controlled localization of fields are investigated in various graded plasmonic lattices. The correspondences between gradon confinements and Bloch oscillations as well as nonBloch oscillations are explored. By taking into account retardation and loss effects, the asymmetric localization behavior and broadband localizat ion due to graded host permittivity are studied. / This thesis will concentrate on gradon confinements, which make controlling fields and properties tunable in graded materials and/or systems. We start with investigating gradon modes and their properties in graded elastic lattices. Using the quantum-classical analogue method, the analytic envelope function is obtained and can be used to analyze the system-size dependence of inverse participation ratio of gradon modes. In damping graded elastic lattices , the frequency-dependent behavior of relaxation rate are studied analytically and numerically. / We continue to study the three-dimensional graded plasmonic lattices with fully retarded electromagnetic interactions. A generalized Ewald-Kornfeld summation formula is developed to deal with the long-range interaction. In the quasistatic limit, various plasmonic gradon modes are investigated. Taking retardation and loss into account, field localization and enhancement are calculated in three-dimensional graded plasmonic lattices with graded size, spacing, and/or host permittivity in one direction. / Zheng, Mingjie = 弹性和等离子体梯度子禁闭研究 / 郑明杰. / Adviser: Kin Wah Yu. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 117-124) and index. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Zheng, Mingjie = Tan xing he deng li zi ti ti du zi jin bi yan jiu / Zheng Mingjie.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344587
Date January 2009
ContributorsZheng, Mingjie., Chinese University of Hong Kong Graduate School. Division of Physics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xx, 130 leaves : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0017 seconds