Développé en 2012, le système CRISPR-Cas a d'ores et déjà révolutionné les sciences du vivant en démocratisant l'édition du génome grâce à sa simplicité d'usage, sa forte efficacité et son adaptabilité. Néanmoins, l'efficacité et la précision de ce système varient grandement ce qui peut freiner ou empêcher sa mise en place. Mes travaux de doctorat se sont articulés autour de ces deux thématiques. L'édition du génome à l'aide de nucléases artificielles repose sur l'activation des voies de réparation de la cellule par induction d'une cassure double brin (DSB) dans l'ADN. Le système CRISPR-Cas est composé d'une nucléase (Cas) associée à un ARN guide qui se lie à la séquence ciblée par appariement de base. Une fois la DSB induite par la nucléase, plusieurs mécanismes de réparation entrent en compétition pour réparer la cassure. La réparation par jonction d'extrémités non-homologues (NHEJ) peut entrainer l'insertion de mutations ce qui permet de réaliser des inactivations de gène alors que la réparation par recombinaison homologue (HDR) permet des corrections ou insertions précises. Les stratégies les plus répandues pour améliorer l'efficacité de l'édition génique reposent sur l'utilisation de marqueurs de sélection. Néanmoins, ces marqueurs peuvent influencer la physiologie des cellules et leur utilisation n'est pas envisageable dans un cadre thérapeutique. Pour y remédier nous avons développé une méthode de cosélection sans marqueur se basant sur la création d'un allèle à gain de fonction. En modifiant le gène ATP1A1 encodant pour la pompe Na+/K+ ATPase par NHEJ et HDR nous avons conféré une résistance à l'ouabaïne aux cellules tout en conservant la fonctionnalité de la pompe. En ciblant simultanément le gène ATP1A1 et un gène d'intérêt, le traitement des cellules à l'ouabaïne permet de sélectionner les cellules résistantes et enrichir la population en cellules génétiquement modifiées dans le gène d'intérêt. Nous avons obtenu des augmentations drastiques de l'efficacité de NHEJ et de HDR et la cosélection à l'aide de Cas12a permet d'enrichir facilement et simultanément de multiples cibles. La méthode est simple et rapide à mettre en place et nous avons démontré sa versatilité en l'appliquant à diverses lignées cellulaires dont les cellules souches et progénitrices hématopoïétiques couramment utilisées en thérapie génique ex vivo, ce qui permet d'envisager de futures applications thérapeutiques. Notre stratégie a été déployée dans de nombreux laboratoires depuis sa publication et, de manière significative, elle a également été utilisée pour enrichir les événements de réparation des éditeurs de base et éditeurs par transcriptase inverse (prime editing) et pourrait aussi être applicable aux futurs outils d'édition du génome. La HDR est la voie privilégiée pour des perspectives thérapeutiques. Néanmoins, la NHEJ est la voie de réparation majoritaire dans les cellules humaines et la recombinaison homologue n'est active que lors des phases S et G2 du cycle cellulaire. La fusion de Cas9 avec le dégron de la géminine a permis de restreindre son activité aux phases S, G2 et M du cycle cellulaire et augmenter sensiblement le ratio de réparation par HDR. Parallèlement à la réplication de l'ADN, la recombinaison homologue présente un pic d'activité en milieu de phase S puis son activité diminue. Nous avons émis l'hypothèse que restreindre l'activité de la nucléase à la phase S permettrait d'augmenter davantage le ratio de réparation par HDR. Néanmoins, aucun dégron existant ne permet une dégradation lors des phases G1, G2 et M. Le système d'identification Fucci se base sur la fusion de dégrons à des protéines fluorescentes pour marquer les différentes phases du cycle cellulaire. Afin de développer un nouveau dégron permettant d'améliorer les systèmes Fucci et CRISPR, nous nous sommes intéressés à SLBP, une protéine active uniquement lors de la phase S. Nous avons caractérisé son dégron et l'avons utilisé afin de développer une sonde fluorescente spécifique de la phase S dont le profil d'expression a été confirmé par cytométrie en flux et microscopie en temps réel. Le marquage précis de la phase S pourrait notamment aider à élucider les voies de réparation de l'ADN. Nous avons également démontré que la fusion d'un de nos dégrons avec SpCas9 permet d'augmenter le taux de réparation par HDR de manière plus significative que le dégron de la géminine. Il sera intéressant d'évaluer sa synergie avec d'autres stratégies d'optimisation du système CRISPR. / Developed in 2012, the CRISPR-Cas system has rapidly revolutionized life sciences and is routinely used in research laboratories worldwide. Its efficiency, simplicity and versatility greatly facilitate gene editing and functional genomics. However, the variability of its precision and efficiency is a major concern since it restrains its implementation, especially for therapeutic use. My PhD investigations revolves around these challenges. Gene editing through artificial nucleases relies on inducing a double-strand break (DSB) in the DNA to activate cellular repair pathways. For CRISPR-Cas systems, targeting is realised through base pairing between the targeted sequence and a guide RNA that associates with the Cas nuclease, making the design of new guides a simple process. Once the nuclease has elicited the DSB, several repair mechanisms compete to repair the break. Non-homologous end joining (NHEJ) can lead to mutations in the targeted sequence and allows gene knock-out while homology-directed repair (HDR) permits precise corrections or insertions. The most common strategy to enrich for cells that have undergone the desired genetic modification relies on the use of selection markers. However, since these markers can impact cell physiology, they are not suitable for therapeutic use. To address this issue, we have developed a marker free co-selection method based on the creation of a gain of function allele. By targeting ATP1A1, the gene encoding for the Na+/K+ ATPase pump, we conferred resistance to ouabain to the cells by either NHEJ or HDR while conserving the pump properties. Simultaneous targeting of ATP1A1 and a gene of interest followed by cell treatment with ouabain allows enrichment for cells genetically modified in the gene of interest. We observed a drastic improvement in efficiency for both NHEJ and HDR events and several targets can be enriched simultaneously and easily by exploiting Cas12a multiplexing capabilities. It's a simple and fast strategy and we have demonstrated its versatility by modifying various cell lines including hematopoietic and progenitor stem cells, commonly used in ex vivo gene therapy, demonstrating therapeutic potential. Since its publication, the ATP1A1 co-selection strategy has been exploited in numerous laboratories and successfully applied to enrich for base and prime editors' modifications and it could as well be applied to future genome editing tools, further demonstrating its versatility. Due to its fidelity, HDR is the preferred pathway for potential therapeutic use. Nevertheless, NHEJ is the major repair mechanism in human cells and homologous recombination is only active during S and G2 cell cycle phases. Although inhibiting NHEJ or promoting HDR by targeting proteins involved in these pathways is greatly efficient, the efficiency variability between cell lines and toxicity is considerable. Fusing Cas9 to the geminin degron restricts its activity to the S, G2 an M phases and slightly improves the HDR ratio. Alongside DNA replication, homologous recombination activity is thought to peak in the mid S phase and decline during G2 phase. We hypothesized that restricting Cas9 nuclease expression to the S phase will further bias repair towards HDR. However, no degron allowing G1, G2 and M phases degradation has been developed yet. The Fucci system is based on the fusion between degrons and fluorescent proteins to distinguish the different cell cycle phases but lack an S-phase specific probe. To improve cell cycle identification and HDR ratio, we decided to develop a degron allowing such a regulation. In that order, we studied the stem-loop binding protein (SLBP) which bind histone mRNAs and is only active during S phase and is degraded in other phases. We analysed SLBP endogenous expression pattern, characterised its degron, and used it to engineer an S-phase specific probe that we named Fucci-S. K562 and HeLa S3 cells constitutively expressing Fucci-S probe were created and their fluorescence expression pattern were analysed by FACS and live cell microscopy to confirm its S-phase specificity. Combined with the Fucci probes it allows to differentiate all the cell cycles phases and could be used in developmental and DNA repair studies. Fusing one of our newly developed degrons to SpCas9 increases HDR ratio more than the geminin degron. Additional studies would allow to establish its range of use and how it synergizes with other CRISPR-Cas optimisation strategies.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/110343 |
Date | 10 May 2024 |
Creators | Duringer, Alexis |
Contributors | Doyon, Yannick |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxi, 328 pages), application/zip, text/plain, application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0116 seconds