Les cellules sont la plus petite forme de vie individuelle qui forme un organisme. La structure et la santé de tous les organismes est essentiellement définie par le nombre, le type et la taille de leurs cellules. Composé d'environ 30 trillions de cellules, l'homme possède des cellules aux fonctions et aux tailles remarquablement variées, allant d'un neurone pouvant atteindre un mètre à une cellule lymphoïde d'environ 16 µm de diamètre. Il est connu que la taille est fondamentalement l'équilibre entre la croissance cellulaire et la division cellulaire. Néanmoins, les questions sur les réseaux moléculaires qui contrôlent et déterminent le maintien de la taille optimale des cellules restent à déchiffrer. D'innombrables travaux ont caractérisé mTORC1 comme une voie régulatrice majeure de la croissance cellulaire jouant un rôle central, intégrant des stimuli intra et extracellulaires. Ce travail porte sur l'investigation et la caractérisation des acteurs moléculaires et des processus qui orchestrent la taille des cellules humaine déterminées par l'épistase chimique. J'ai entrepris une bibliothèque CRISPR / Cas9 à inactivation prolongée (EKO) dans NALM-6 (lignée cellulaire de lymphome pré-B), suivie d'un fractionnement de la taille des cellules par élutriation à contre-courant en présence de rapamycine (inhibiteur de mTOR), et comparé aux données non publiées données du laboratoire utilisant les mêmes méthodes sans rapamycine. Cette analyse de l'étude indique que dans le contexte amont de mTOR, la perte de gènes liés à la détection des nutriments entraîne une perte de taille en présence d'inhibition de mTOR. En outre, plusieurs knockouts géniques dans la biogenèse des ribosomes et l'homéostasie du calcium ont conduit à une perte ou un gain de taille, montrant un rôle pivot possible de ces processus dans le contrôle de la taille des cellules d'une manière dépendante de mTOR. Ce travail a fourni des informations sur les gènes et réseaux connus et inconnus qui peuvent réguler la taille des cellules d'une manière dépendante de mTOR. Ces résultats doivent être validés et approfondis. / All organisms are essentially structured and fitness defined by cell number, type and size. Composed of around 30 trillion cells, humans have cells with remarkably varied functions and size, ranging from a neuron that can reach one meter in length to a lymphoid cell that is around 16 μm in diameter. At a fundamental level, size is determined by the balance between cell growth and cell division. The molecular networks that control and maintain optimal cell size are yet to be deciphered. The mTORC1 pathway is a major regulator of cell growth that plays a central role in integrating intra- and extra-cellular stimuli. This study addresses the investigation and characterization of the molecular players and processes that orchestrate cell size in human cells, as determined by chemical-genetic size screens and epistasis analysis. I undertook a CRISPR/Cas9 extended-knockout (EKO) genome-wide library screen in the NALM-6 pre-B lymphoma cell line, followed by cell size fractionation by counter flow elutriation in the presence of the mTOR inhibitor rapamycin, and compared the screen data to a similar screen performed in the absence of rapamycin. The analysis indicates that upstream of mTOR, the loss of genes that are related to nutrient sensing, results in size changes in the presence of mTOR inhibition. Also, several gene knockouts in ribosome biogenesis and calcium homeostasis led to size alterations, suggesting a possible a pivotal role of these processes in cell size control in a mTOR-dependent fashion. This study provides insights into the genetic networks that regulate cell size in a mTOR-dependent fashion and establishes new hypotheses for future experimental tests.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/24461 |
Date | 05 1900 |
Creators | Costa, Marcela |
Contributors | Tyers, Michael David |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Page generated in 0.0022 seconds