La formation de la structure de grains dans les métaux pendant la solidification est déterminante pour les propriétés mécaniques et électroniques des pièces coulées. En plus de la texture donnée au matériau, la germination et la croissance des grains sont liées en particulier avec la formation des phases thermodynamiques et les inhomogénéités en composition d'éléments d'alliage. La structure de grains est rarement modélisée à l'échelle macroscopique, d'autant plus que l'approximation 2D est très souvent injustifiée. Dans ces travaux, la germination et la croissance de chaque grain individuel sont suivies avec un modèle macroscopique 3D CAFE. La microstructure interne des grains n'est pas explicitement résolue. Pour valider les approximations faites sur cette microstructure, une comparaison directe avec un modèle microscopique "champ de phase" a été réalisée. Celle-ci a permis de valider les hypothèses de construction du modèle CAFE, de mettre en avant le lien entre données calculées par les modèles microscopiques et paramètres d'entrée des modèles à plus grande échelle, et les domaines de validité de chaque modèle. Dans un deuxième temps, un couplage avec la ségrégation chimique et les bases de données thermodynamiques a été mise en place et appliquée sur un alliage binaire étain-plomb. Une expérience de macroségrégation par convection naturelle a été simulée. L'accord entre les courbes de température expérimentales et simulées atteint une précision de l'ordre de 1K, et la recalescence est correctement prédite. Les cartes de compositions sont comparables qualitativement, ainsi que la structure de grains. Les avantages du suivi de la structure ont été mis en évidence par rapport à une simulation par éléments finis classique. De plus, il a été montré que le calcul 3D était ici indispensable. Enfin, une implémentation parallèle optimisée du code a permis d'appliquer le modèle CAFE à un lingot de silicium polycristallin industriel de dimensions 0,192 x 0,192 x 2,08m, avec une taille de cellules de 250µm. Au total, 4,9 milliards de cellules sont représentées sur le domaine, et la germination et la croissance de 1,6 million de grains sont suivies.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00803282 |
Date | 04 December 2012 |
Creators | Carozzani, Tommy |
Publisher | Ecole Nationale Supérieure des Mines de Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds