Die bisher gängigen PVC-Membranen ionenselektiver Elektroden weisen eine Reihe von Schwachstellen auf: Sie haften nur durch Adhäsion am Substrat, sodass sich bei miniaturisierten Elektroden die Membran ablösen kann; Membranbestandteile wie der Weichmacher, das Ionophor oder der Ionenaustauscher können bei der Verwendung ausgewaschen werden, sodass sich die chemischen und physikalischen Eigenschaften der Membran verschlechtern; auf der Membranoberfläche kann sich auf Grund ihrer Hydrophobie ein Biofilm ausbilden, der die Membran abschirmt. Diese Schwachstellen bewirken eine Dysfunktionalität der ionenselektiven Elektrode, weshalb im Rahmen dieser Arbeit ein Glycopolymerfilm entwickelt worden ist, der diese Schwachstellen nicht aufweist. Die in dieser Arbeit entwickelte Membran, die auf einem multifunktionalen Glycopolymer beruht, zielt auf die Egalisierung der Schwachstellen konventioneller ionenselektiver PVC-Membranen. Die entwickelte Membran kommt dabei ohne Weichmacher aus, reduziert die Ausbildung von Biofilmen, bindet kovalent an das darunterliegende organische Substrat und durch die kovalente Anbindung des Ionophors wird dessen Auswaschen verhindert.
Um eine kovalente Bindung der Membran an organische Vermittlerschichten zu erreichen, wie sie bei All-solid-state-Elektroden zum Einsatz kommen, werden zunächst die photovernetzbaren Glycopolymere 12a–c entwickelt, bei denen etwa neun Photovernetzereinheiten über PEG-Spacer an den PEI25-Kern gebunden sind. Drei PEG-Spacer mit unterschiedlicher Länge werden hinsichtlich ihres Einflusses auf die Filmbildung untersucht: Sie besitzen vier (12a), acht (12b) und zwölf Ethylenglycoleinheiten (12c). Dabei zeigt sich, dass eine Spacerlänge von zwölf Ethylenglycoleinheiten für eine effektive Photovernetzung notwendig ist, weshalb für die folgenden Strukturen nur PEG12-Spacer eingesetzt werden. Um eine kovalente Anbindung des Ionophors an das Glycopolymer zu erreichen, werden verschiedene Syntheserouten genutzt und auf ihre Wirkung hin analysiert. Die frühe direkte Anbindung des Calix[4]arenderivats 3 an den PEI25-Kern der Glycopolymere 17a–c erweist sich als nachteilig, da hierdurch darauffolgende Syntheseschritte beeinträchtigt werden. Anderseits zeigen diese Glycopolymere, dass sich die Calix[4]areneinheiten nicht negativ auf die Glycopolymerfilmbildung auswirken.
Zur Überwindung der erwähnten Probleme werden in den multifunktionalen Glycopolymeren 22a und 22b die Calix[4]arene wie der Photovernetzer am Ende der Syntheseroute über PEG12-Spacer angebunden. Dies erfolgt dabei über den upper rim des Calix[4]arens, da somit der lower rim, an dem sich ionenkomplexierenden Gruppen befinden, nicht beeinflusst wird. Neben der Struktur des Glycopolymers wird auch eine Methode zur Glycopolymerfilmbildung auf Modellsubstraten entwickelt. Hierfür werden Siliziumwafer mit einer hydrophilen organischen Vermittlerschicht aus (3-Glycidyloxypropyl)-trimethoxysilan (GOPS) eingesetzt. Bei der Filmbildung zeigt sich, dass die alleinige Bestrahlung mit UV-Licht nicht ausreichend ist, um eine stabile Vernetzung zu generieren. Erst nach vorausgehendem Tempern (1 h bei 120 °C) werden Filme mit einer Dicke von (42±8) nm für das Glycopolymer 12c erhalten. Die Glycopolymere 12a und 12b, die kürzere PEG-Spacer enthalten, bilden deutlich dünnere Filme aus. Für die vollständige Vernetzung ist eine Bestrahlungszeit von einer Stunde notwendig, was einer Energiedosis von etwa 290 J/cm² entspricht.
Trotz möglicher freier Aminogruppen in der Struktur bilden die Glycopolymere 17a–c, bei denen unterschiedlich viele Calix[4]arene direkt an den PEI25-Kern gebunden sind, stabile Filme aus. Die sich ergebenden Schichtdicken zeigen dabei weder im Vergleich zum Glycopolymer 12c noch untereinander signifikante Unterschiede. Die Filmbildung auf dem hydrophilen GOPS wird demzufolge durch die direkt angebundenen Calix[4]arene nicht beeinträchtigt. Auf Grund des erwarteten amphiphilen Charakters der Glycopolymere 17a–c wird ihre Filmbildung nicht nur auf hydrophilen, sondern auch auf hydrophoben Modellsubstraten untersucht. Hierzu werden Siliziumwafer mit hydrophoben Vermittlerschichten aus Benzophenonsilan (BPS) und Poly-α-methylstyrol (PαMS) eingesetzt. Auf den hydrophoben Vermittlerschichten bilden die Glycopolymere 17a–c deutlich dünnere Filme aus als auf dem hydrophilen GOPS. Die Calix[4]areneinheiten sind demnach durch die Maltosehülle abgeschirmt und es treten kaum Wechselwirkungen mit den hydrophoben Substratoberflächen auf.
Im Gegensatz dazu ermöglicht die Anbindung der Calix[4]arene über PEG12-Spacer den Glycopolymeren 22a und 22b auf hydrophilen wie hydrophoben Vermittlerschichten in etwa gleich dicke Filme auszubilden. Offensichtlich liegt bei diesen Glycopolymeren eine amphiphile Peripherie vor, sodass sich die Glycopolymere besonders zur Beschichtung von All-solid-state-Elektroden mit verschiedenen Mediatorschichten eignen. Die photovernetzten Glycopolymerfilme quellen auf Grund ihrer hydrophilen Eigenschaften. Der Quellungsgrad q liegt dabei niedriger, wenn hydrophobe Calix[4]arene in die Struktur eingebunden sind: q(17c) = 2,3 im Vergleich zu q(12c) = 3,6. Erfolgt die Anbindung der Calix[4]arene direkt an den PEI25-Kern, ist die Glycopolymerstruktur unflexibel, sodass der Quellungsprozess bis zu sieben Stunden benötigt. Durch die Anbindung der Calix[4]arene über PEG12-Spacer wird die Flexibilität der Glycopolymere hingegen nicht beeinträchtigt, sodass der Quellungsprozess weniger als zwei Stunden benötigt.
PVC-Membranen verlieren schon nach kurzer Zeit ihre ionenselektiven Eigenschaften, weil etwa der Weichmacher aus den Membranen diffundiert und diese dadurch spröde werden. Die Glycopolymerfilme sind hingegen über einen Zeitraum von mindestens 100 Tagen gegenüber sauren (pH = 4), neutralen und basischen (pH = 10) Lösungen stabil. Die entwickelten Glycopolymere werden im Rahmen einer Kooperation mit dem Kurt-Schwabe-Institut (KSI) in Meinsberg auf All-solid-state-Elektroden als ionenselektive Membranen eingesetzt. Die Graphitelektroden werden dafür mit einer Mediatorschicht aus leitfähigem Polypyrrol (PPy) und dem Glycopolymer 17c beschichtet. Die All-solid-state-Elektroden werden hinsichtlich ihres Ansprechverhaltens gegenüber verschiedenen Ionen untersucht.
Die Anbindung und Vernetzung erfolgt nach der für die Modellsubstrate optimierten Methode. Jedoch werden die Bedingungen für das Tempern angepasst, um eine Beschädigung der All-solid-state-Elektrode auszuschließen: 12 h bei 45 °C statt 1 h bei 120 °C. Dabei bildet sich ein inhomogener Belag aus, bei dem Teile der PPy-Schicht frei bleiben. Im Vergleich zur reinen und zur mit Polypyrrol (PPy) beschichteten Graphitelektrode zeigt die Elektrode, die mit einem Glycopolymerfilm versehen ist, trotz der Inhomogenität stabile und reproduzierbare Potentiale. Diese sind jedoch nicht von der Konzentration der Kationen, sondern von der der Anionen abhängig. Durch die Auftragung einer Ionentauscherschicht auf die ionenselektive Membran soll das Vordringen der Anionen in die Membran der All-solid-state-Elektrode unterbunden werden. Dadurch soll das Ansprechverhalten der All-solid-state-Elektrode auf die Kationen gelenkt werden. Entsprechende Arbeiten werden am KSI durchgeführt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-218851 |
Date | 10 February 2017 |
Creators | Kluge, Jörg |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Brigitte Voit, Dr. Dietmar Appelhans, Prof. Dr. Brigitte Voit, Prof. Dr. Carsten Werner |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0029 seconds