Return to search

Détection d'hypovigilance chez le conducteur par fusion d'informations physiologiques et vidéo

L'hypovigilance correspond à la transition entre la veille et le sommeil durant laquelle l'organisme voit ses facultés d'observation et d'analyse fortement réduites. Elle est responsable de nombreux accidents sur la route. Le but de cette thèse est de proposer un système de détection de cette phase accidentogène à partir de l'analyse conjointe de l'activité cérébrale (électroencéphalogramme ou EEG) et d'une vidéo du conducteur. Dans un premier temps, une méthode non-supervisée de détection d'hypovigilance fonctionnant à l'aide d'un unique canal EEG a été proposée. Cette méthode, qui met en oeuvre différentes techniques de traitement du signal et de diagnostic, obtient de bonnes performances sur un ensemble de conducteurs, sans qu'il soit nécessaire de régler de paramètres. Dans un deuxième temps, nous nous sommes intéressés à la caractérisation des signes visuels de l'hypovigilance par une analyse vidéo des clignements. Une comparaison entre l'approche vidéo développée et l'approche traditionnelle par électro-oculogramme (EOG) a permis d'étudier dans quelle mesure la vidéo peut remplacer l'EOG pour la caractérisation des clignements. Elle a également permis de souligner la nécessité d'utiliser d'une caméra rapide (pouvant aller jusqu'à 200fps) pour caractériser les clignements. Un algorithme de détection d'hypovigilance à partir de la caractérisation vidéo des clignements a ainsi été développé. Pour finir, un algorithme de détection d'hypovigilance fusionnant, à l'aide de logique floue, les informations obtenues par les approches physiologique et vidéo est présenté. Toutes ces méthodes ont été testées et validées sur une base de données conséquente de conduite en état d'hypovigilance, la base de données ayant été expertisée par un spécialiste.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00440959
Date09 November 2009
CreatorsPicot, Antoine
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds