• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Event-Based Feature Detection, Recognition and Classification / Techniques de Détection, de Reconnaissance et de Classification de primitives "Event-Based"

Cohen, Gregory Kevin 05 September 2016 (has links)
La detection, le suivi de cible et la reconnaissance de primitives visuelles constituent des problèmes fondamentaux de la vision robotique. Ces problématiques sont réputés difficiles et sources de défis. Malgré les progrès en puissance de calcul des machines, le gain en résolution et en fréquence des capteurs, l’état-de-l’art de la vision robotique peine à atteindre des performances en coût d’énergie et en robustesse qu’offre la vision biologique. L’apparition des nouveaux capteurs, appelés "rétines de silicium” tel que le DVS (Dynamic Vision Sensor) et l’ATIS (Asynchronous Time-based Imaging Sensor) reproduisant certaines fonctionnalités des rétines biologiques, ouvre la voie à de nouveaux paradigmes pour décrire et modéliser la perception visuelle, ainsi que pour traiter l’information visuelle qui en résulte. Les tâches de suivi et de reconnaissance de formes requièrent toujours la caractérisation et la mise en correspondance de primitives visuelles. La détection de ces dernières et leur description nécessitent des approches fondamentalement différentes de celles employées en vision robotique traditionnelle. Cette thèse développe et formalise de nouvelles méthodes de détection et de caractérisation de primitives spatio-temporel des signaux acquis par les rétines de silicium (plus communément appelés capteurs “event-based”). Une structure théorique pour les tâches de détection, de suivi, de reconnaissance et de classification de primitives est proposée. Elle est ensuite validée par des données issues de ces capteurs “event-based”,ainsi que par des bases données standard du domaine de la reconnaissance de formes, convertit au préalable à un format compatible avec la representation “événement”. Les résultats présentés dans cette thèse démontrent les potentiels et l’efficacité des systèmes "event-based”. Ce travail fournit une analyse approfondie de différentes méthodes de reconnaissance de forme et de classification “event-based". Cette thèse propose ensuite deux solutions basées sur les primitives. Deux mécanismes d’apprentissage, un purement événementiel et un autre, itératif, sont développés puis évalués pour leur capacité de classification et de robustesse. Les résultats démontrent la validité de la classification “event-based” et souligne l’importance de la dynamique de la scène dans les tâches primordiales de définitions des primitives et de leur détection et caractétisation. / One of the fundamental tasks underlying much of computer vision is the detection, tracking and recognition of visual features. It is an inherently difficult and challenging problem, and despite the advances in computational power, pixel resolution, and frame rates, even the state-of-the-art methods fall far short of the robustness, reliability and energy consumption of biological vision systems. Silicon retinas, such as the Dynamic Vision Sensor (DVS) and Asynchronous Time-based Imaging Sensor (ATIS), attempt to replicate some of the benefits of biological retinas and provide a vastly different paradigm in which to sense and process the visual world. Tasks such as tracking and object recognition still require the identification and matching of local visual features, but the detection, extraction and recognition of features requires a fundamentally different approach, and the methods that are commonly applied to conventional imaging are not directly applicable. This thesis explores methods to detect features in the spatio-temporal information from event-based vision sensors. The nature of features in such data is explored, and methods to determine and detect features are demonstrated. A framework for detecting, tracking, recognising and classifying features is developed and validated using real-world data and event-based variations of existing computer vision datasets and benchmarks. The results presented in this thesis demonstrate the potential and efficacy of event-based systems. This work provides an in-depth analysis of different event-based methods for object recognition and classification and introduces two feature-based methods. Two learning systems, one event-based and the other iterative, were used to explore the nature and classification ability of these methods. The results demonstrate the viability of event-based classification and the importance and role of motion in event-based feature detection.
2

Video-based postural sway analysis in a controlled environment

Urseanu, Monica 08 1900 (has links)
À mesure que la population des personnes agées dans les pays industrialisés augmente au fil de années, les ressources nécessaires au maintien du niveau de vie de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont l’une des principales causes d’hospitalisation chez les personnes agées, et, de plus, il a été démontré que le risque de chute d’une personne agée a une correlation avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt de développer un système automatisé pour analyser l’équilibre chez une personne, comme moyen d’évaluation objective. Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se basant sur une installation simple contenant une seule caméra sur un trépied, on a développé un algorithme utilisant une implémentation de la méthode de détection d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le mouvement latéral que celui antérieur-postérieur d’un sujet. On a obtenu des bons résultats avec les deux types de suivi, cependant l’algorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’intégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile à interpréter. / As the senior population in developed countries increases, so will the resources dedicated to maintaining a high standard of life for the elderly. Statistics show that falls are one of the main causes of senior citizens being hospitalized. Furthermore, it has been shown that the risk of an elderly person falling is correlated to their ability to maintain their balance during standing position. It is then of interest to develop an automated system to evaluate a subject’s balance, or postural sway, as a means of objective evaluation. In this study we have proposed the implementation of such a system. Based on a simple setup of one camera on a tripod, we have developed an algorithm using the Viola-Jones implementation, as well as template matching, to track both lateral and anterior-posterior postural sway. We have obtained good results for both types of tracking, however, the tracking algorithm is sensitive to lighting conditions and any kind of noise in the images. It would be of interest, as a future development, to integrate both types of tracking, so as to obtain only one easily-interpretable dataset as a result.
3

Détection d'hypovigilance chez le conducteur par fusion d'informations physiologiques et vidéo

Picot, Antoine 09 November 2009 (has links) (PDF)
L'hypovigilance correspond à la transition entre la veille et le sommeil durant laquelle l'organisme voit ses facultés d'observation et d'analyse fortement réduites. Elle est responsable de nombreux accidents sur la route. Le but de cette thèse est de proposer un système de détection de cette phase accidentogène à partir de l'analyse conjointe de l'activité cérébrale (électroencéphalogramme ou EEG) et d'une vidéo du conducteur. Dans un premier temps, une méthode non-supervisée de détection d'hypovigilance fonctionnant à l'aide d'un unique canal EEG a été proposée. Cette méthode, qui met en oeuvre différentes techniques de traitement du signal et de diagnostic, obtient de bonnes performances sur un ensemble de conducteurs, sans qu'il soit nécessaire de régler de paramètres. Dans un deuxième temps, nous nous sommes intéressés à la caractérisation des signes visuels de l'hypovigilance par une analyse vidéo des clignements. Une comparaison entre l'approche vidéo développée et l'approche traditionnelle par électro-oculogramme (EOG) a permis d'étudier dans quelle mesure la vidéo peut remplacer l'EOG pour la caractérisation des clignements. Elle a également permis de souligner la nécessité d'utiliser d'une caméra rapide (pouvant aller jusqu'à 200fps) pour caractériser les clignements. Un algorithme de détection d'hypovigilance à partir de la caractérisation vidéo des clignements a ainsi été développé. Pour finir, un algorithme de détection d'hypovigilance fusionnant, à l'aide de logique floue, les informations obtenues par les approches physiologique et vidéo est présenté. Toutes ces méthodes ont été testées et validées sur une base de données conséquente de conduite en état d'hypovigilance, la base de données ayant été expertisée par un spécialiste.

Page generated in 0.1372 seconds