• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 1
  • Tagged with
  • 26
  • 19
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unconventional computing using memristive nanodevices : from digital computing to brain-like neuromorphic accelerator / Calcul non conventionnel avec des nanocomposants memristifs : du calcul numérique aux accélérateurs neuromorphiques

Shahsavari, Mahyar 14 December 2016 (has links)
On estime que le nombre d'objets connectés à l'Internet atteindra 50 à 100 milliards en 2020. La recherche s'organise en deux champs principaux pour répondre à ce défi : l'internet des objets et les grandes masses de données. La demande en puissance de calcul augmente plus vite que le développement de nouvelles architectures matérielles en particulier à cause du ralentissement de la loi de Moore. La raison principale en est le mur de la mémoire, autrement appelé le goulet d'étranglement de Von Neumann, qui vient des différences de vitesse croissantes entre le processeur et la mémoire. En conséquence, il y a besoin d'une nouvelle architecture matérielle rapide et économe en énergie pour répondre aux besoins énormes de puissance de calcul.Dans cette thèse, nous proposons de nouvelles architectures pour les processeurs de prochaine génération utilisant des nanotechnologies émergentes telles que les memristors. Nous étudions des méthodes de calcul non conventionnelles aussi bien numériques qu'analogiques. Notre contribution principale concerne les réseaux de neurones à impulsion (RNI) ou architectures neuromorphiques. Dans la première partie de la thèse, nous passons en revue les memristors existants, étudions leur utilisation dans une architecture numérique à base de crossbars, puis introduisons les architectures neuromorphiques. La deuxième partie contient la contribution principale~: le développement d'un simulateur d'architectures neuromorphiques (N2S3), l'introduction d'un nouveau type de synapse pour améliorer l'apprentissage, une exploration des paramètres en vue d'améliorer les RNI, et enfin une étude de la faisabilité des réseaux profonds dans les RNI. / By 2020, there will be 50 to 100 billion devices connected to the Internet. Two domains of hot research to address these high demands of data processing are the Internet of Things (IoT) and Big Data. The demands of these new applications are increasing faster than the development of new hardware particularly because of the slowdown of Moore's law. The main reason of the ineffectiveness of the processing speed is the memory wall or Von Neumann bottleneck which is coming from speed differences between the processor and the memory. Therefore, a new fast and power-efficient hardware architecture is needed to respond to those huge demands of data processing. In this thesis, we introduce novel high performance architectures for next generation computing using emerging nanotechnologies such as memristors. We have studied unconventional computing methods both in the digital and the analog domains. However, the main focus and contribution is in Spiking Neural Network (SNN) or neuromorphic analog computing. In the first part of this dissertation, we review the memristive devices proposed in the literature and study their applicability in a hardware crossbar digital architecture. At the end of part~I, we review the Neuromorphic and SNN architecture. The second part of the thesis contains the main contribution which is the development of a Neural Network Scalable Spiking Simulator (N2S3) suitable for the hardware implementation of neuromorphic computation, the introduction of a novel synapse box which aims at better learning in SNN platforms, a parameter exploration to improve performance of memristor-based SNN, and finally a study of the application of deep learning in SNN.
2

Méthode de calcul et implémentation d’un processeur neuromorphique appliqué à des capteurs évènementiels / Computational method and neuromorphic processor design applied to event-based sensors

Mesquida, Thomas 20 December 2018 (has links)
L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retranscrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données envoyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels, nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel. Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons capteurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neuronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée, ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus, n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés fournissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplacement d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromorphiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de nouvelles solutions de traitement. Plus précisément, les applications et le matériel développés s’appuient sur un codage temporel de l’information dans la suite d'événements fournis par le capteur. / Studying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors.
3

Development of filamentary Memristive devices for synaptic plasticity implementation / Développement des dispositifs memristifs filamentaires pour l'implémentation de la plasticité synaptique

La Barbera, Selina 18 December 2015 (has links)
Reproduire les fonctionnalités du cerveau représente un défi majeur dans le domaine des technologies de l’information et de la communication. Plus particulièrement, l’ingénierie neuromorphique, qui vise à implémenter au niveau matériel les propriétés de traitement de l’information du cerveau, apparait une direction de recherche prometteuse. Parmi les différentes stratégies poursuivies dans ce domaine, la proposition de composant memristif a permis d’envisager la réalisation des fonctionnalités des synapses et de répondre potentiellement aux problématiques d’intégration. Dans cette dissertation, nous présenterons comment les fonctionnalités synaptiques avancées peuvent être réalisées à partir de composants mémoires memristifs. Nous présentons une revue de l’état de l’art dans le domaine de l’ingénierie neuromorphique. En nous intéressant à la physique des composants mémoires filamentaires de type cellules électrochimiques, nous démontrons comment les processus de mémoire à court terme et de mémoire à long terme présents dans les synapses biologiques peuvent être réalisés en contrôlant la croissance de filaments de type dendritiques. Ensuite nous implémentons dans ces composants une fonctionnalité synaptique basée sur la corrélation temporelle entre les signaux provenant des neurones d’entrée et de sortie. Ces deux approches sont ensuite analysées à partir d’un modèle inspiré de la biologie permettant de mettre l’accent sur l’analogie entre synapses biologiques et composants mémoires filamentaires. Finalement, à partir de cette approche de modélisation, nous évaluons les potentialités de ces composants mémoires pour la réalisation de fonctions neuromorphiques concrètes. / Replicating the computational functionalities of the brain remains one of the biggest challenges for the future of information and communication technologies. In this context, neuromorphic engineering appears a very promising direction. In this context memristive devices have been recently proposed for the implementation of synaptic functions, offering the required features and integration potentiality in a single component. In this dissertation, we present how advanced synaptic features can be implemented in memristive nanodevices. By exploiting the physical properties of filamentary switching, we successfully implemented a non-Hebbian plasticity form corresponding to the synaptic adaptation. We demonstrate that complex filament shape, such as dendritic paths of variable density and width, can reproduce short- and long- term processes observed in biological synapses and can be conveniently controlled by achieving a flexible way to program the device memory state and the relative state volatility. Then, we show that filamentary switching can be additionally controlled to reproduce a Hebbian plasticity form that corresponds to an increase of the synaptic weight when time correlation between pre- and post-neuron firing is experienced at the synaptic connection. We interpreted our results in the framework of a phenomenological model developed for biological synapses. Finally, we exploit this model to investigate how spike-based systems can be realized for memory and computing applications. These results pave the way for future engineering of neuromorphic computing systems, where complex behaviors of memristive physics can be exploited.
4

Conception et fabrication de neurones artificiels pour le traitement bioinspiré de l'information / Conception and fabrication of artificial neuron for bioinspired information processing

Hedayat, Sara 18 September 2018 (has links)
Actuellement, les technologies du traitement d'information ont atteint leurs limites et il devient donc urgent de proposer de nouveaux paradigmes capables de réduire la consommation d'énergie tout en augmentant la capacité de calcul des ordinateurs. Le cerveau humain est un fascinant et puissant organe, avec ses 300 milliards de cellule, il est capable d’effectuer des taches cognitives en consommant 20W. Dans ce contexte nous avons investiguer un nouveau paradigme appelé "neuromorphic computing" ou le traitement bio-inspiré de l'information.L'objectif de cette thèse est de concevoir et de fabriquer un neurone artificiel a très faible consommation utilisant les récentes avancées scientifiques dans les neurosciences et les nanotechnologies. Premièrement, on a investigué le fonctionnement d'un neurone vivant, sa membrane neuronale et nous avons exploré 3 différents modèles de membranes connues sous le nom de Hodgkin Huxley, Wei et Morris Lecar. Deuxièmement, en se basant sur le modèle de Morris Lecar, nous avons réalisé des neurones artificiels analogiques à spike avec différentes constantes de temps. Puis ils ont été fabriqués avec la technologie 65nm CMOS. Par la suite, nous les avons caractérisés et obtenu des performances dépassant l’état de l’art en terme de surface occupée, puissance dissipée et efficacité énergétique. Finalement, on a analysé et comparé le bruit dans ces neurones artificiels avec le bruit dans des neurones biologiques et on a démontré expérimentalement le phénomène de résonance stochastique. Ces neurones artificiels peuvent être extrêmement utiles pour une large variété d’application allant du traitement de données à l’application médicale. / Current computing technology has now reached its limits and it becomes thus urgent to propose new paradigms for information processing capable of reducing the energy consumption while improving the computing performances. Moreover, the human brain, is a fascinating and powerful organ with remarkable performances in areas as varied as learning, creativity, fault tolerance. Furthermore, with its total 300 billion cells, is able to perform complex cognitive tasks by consuming only around 20W. In this context, we investigated a new paradigm called neuromorphic or bio-inspired information processing.More precisely, the purpose of this thesis was to design and fabricate an ultra-low power artificial neuron using recent advances in neuroscience and nanotechnology. First, we investigated the functionalities of living neurons, their neuronal membrane and explored different membrane models known as Hodgkin Huxley, Wei and Morris Lecar models. Second, based on the Morris Lecar model, we designed analog spiking artificial neurons with different time constants and these neurons were fabricated using 65nm CMOS technology. Then we characterized these artificial neurons and obtained state of the art performances in terms of area, dissipated power and energy efficiency. Finally we investigated the noise within these artificial neurons, compared it with the biological sources of noise in a living neuron and experimentally demonstrated the stochastic resonance phenomenon. These artificial neurons can be extremely useful for a large variety of applications, ranging from data analysis (image and video processing) to medical aspect (neuronal implants).
5

Computational methods for event-based signals and applications / Méthodes de calcul pour les signaux événementiels et applications

Lagorce, Xavier 22 September 2015 (has links)
Les neurosciences computationnelles sont une grande source d'inspiration pour le traitement de données. De nos jours, aussi bon que soit l'état de l'art de la vision par ordinateur, il reste moins performant que les possibilités offertes par nos cerveaux ou ceux d'autres animaux ou insectes. Cette thèse se base sur cette observation afin de développer de nouvelles méthodes de calcul pour la vision par ordinateur ainsi que pour le calcul de manière générale reposant sur les données issues de capteurs événementiels tels que les "rétines artificielles". Ces capteurs copient la biologie et sont utilisés dans ces travaux pour le caractère épars de leurs données ainsi que pour leur précision temporelle : l'information est codée dans des événements qui sont générés avec une précision de l'ordre de la microseconde. Ce concept ouvre les portes d'un paradigme complètement nouveau pour la vision par ordinateur, reposant sur le temps plutôt que sur des images. Ces capteurs ont été utilisés pour développer des applications comme le suivi ou la reconnaissance d'objets ou encore de l'extraction de motifs élémentaires. Des plate-formes de calcul neuromorphiques ont aussi été utilisées pour implémenter plus efficacement ces algorithmes, nous conduisant à repenser l'idée même du calcul. Les travaux présentés dans cette thèse proposent une nouvelle façon de penser la vision par ordinateur via des capteurs événementiels ainsi qu'un nouveau paradigme pour le calcul. Le temps remplace la mémoire permettant ainsi des opérations complètement locales, ce qui permet de réaliser des machines hautement parallèles avec une architecture non-Von Neumann. / Computational Neurosciences are a great source of inspiration for data processing and computation. Nowadays, how great the state of the art of computer vision might be, it is still way less performant that what our brains or the ones from other animals or insects are capable of. This thesis takes on this observation to develop new computational methods for computer vision and generic computation relying on data produced by event-based sensors such as the so called “silicon retinas”. These sensors mimic biology and are used in this work because of the sparseness of their data and their precise timing: information is coded into events which are generated with a microsecond precision. This opens doors to a whole new paradigm for machine vision, relying on time instead of using images. We use these sensors to develop applications such as object tracking or recognition and feature extraction. We also used computational neuromorphic platforms to better implement these algorithms which led us to rethink the idea of computation itself. This work proposes new ways of thinking computer vision via event-based sensors and a new paradigm for computation. Time is replacing memory to allow for completely local operations, enabling highly parallel machines in a non-Von Neumann architecture.
6

Event-Based Feature Detection, Recognition and Classification / Techniques de Détection, de Reconnaissance et de Classification de primitives "Event-Based"

Cohen, Gregory Kevin 05 September 2016 (has links)
La detection, le suivi de cible et la reconnaissance de primitives visuelles constituent des problèmes fondamentaux de la vision robotique. Ces problématiques sont réputés difficiles et sources de défis. Malgré les progrès en puissance de calcul des machines, le gain en résolution et en fréquence des capteurs, l’état-de-l’art de la vision robotique peine à atteindre des performances en coût d’énergie et en robustesse qu’offre la vision biologique. L’apparition des nouveaux capteurs, appelés "rétines de silicium” tel que le DVS (Dynamic Vision Sensor) et l’ATIS (Asynchronous Time-based Imaging Sensor) reproduisant certaines fonctionnalités des rétines biologiques, ouvre la voie à de nouveaux paradigmes pour décrire et modéliser la perception visuelle, ainsi que pour traiter l’information visuelle qui en résulte. Les tâches de suivi et de reconnaissance de formes requièrent toujours la caractérisation et la mise en correspondance de primitives visuelles. La détection de ces dernières et leur description nécessitent des approches fondamentalement différentes de celles employées en vision robotique traditionnelle. Cette thèse développe et formalise de nouvelles méthodes de détection et de caractérisation de primitives spatio-temporel des signaux acquis par les rétines de silicium (plus communément appelés capteurs “event-based”). Une structure théorique pour les tâches de détection, de suivi, de reconnaissance et de classification de primitives est proposée. Elle est ensuite validée par des données issues de ces capteurs “event-based”,ainsi que par des bases données standard du domaine de la reconnaissance de formes, convertit au préalable à un format compatible avec la representation “événement”. Les résultats présentés dans cette thèse démontrent les potentiels et l’efficacité des systèmes "event-based”. Ce travail fournit une analyse approfondie de différentes méthodes de reconnaissance de forme et de classification “event-based". Cette thèse propose ensuite deux solutions basées sur les primitives. Deux mécanismes d’apprentissage, un purement événementiel et un autre, itératif, sont développés puis évalués pour leur capacité de classification et de robustesse. Les résultats démontrent la validité de la classification “event-based” et souligne l’importance de la dynamique de la scène dans les tâches primordiales de définitions des primitives et de leur détection et caractétisation. / One of the fundamental tasks underlying much of computer vision is the detection, tracking and recognition of visual features. It is an inherently difficult and challenging problem, and despite the advances in computational power, pixel resolution, and frame rates, even the state-of-the-art methods fall far short of the robustness, reliability and energy consumption of biological vision systems. Silicon retinas, such as the Dynamic Vision Sensor (DVS) and Asynchronous Time-based Imaging Sensor (ATIS), attempt to replicate some of the benefits of biological retinas and provide a vastly different paradigm in which to sense and process the visual world. Tasks such as tracking and object recognition still require the identification and matching of local visual features, but the detection, extraction and recognition of features requires a fundamentally different approach, and the methods that are commonly applied to conventional imaging are not directly applicable. This thesis explores methods to detect features in the spatio-temporal information from event-based vision sensors. The nature of features in such data is explored, and methods to determine and detect features are demonstrated. A framework for detecting, tracking, recognising and classifying features is developed and validated using real-world data and event-based variations of existing computer vision datasets and benchmarks. The results presented in this thesis demonstrate the potential and efficacy of event-based systems. This work provides an in-depth analysis of different event-based methods for object recognition and classification and introduces two feature-based methods. Two learning systems, one event-based and the other iterative, were used to explore the nature and classification ability of these methods. The results demonstrate the viability of event-based classification and the importance and role of motion in event-based feature detection.
7

Asynchronous event-based 3d vision / Evénement asynchrone à base de vision 3D

Amaro Da Costa Luz Carneiro, Joao Paulo 10 February 2014 (has links)
L’implementation de la vision biologique sur machine est un problème majeur que la recherche actuelle a à peine effleuré la surface. Les organismes vivants sont capables de réaliser des tâches visuelles très complexes et de manière très efficace. La stéréovision fait partie de ces mécanismes complexes que les sci- entifiques tentent de reproduire à l’aide de caméras à haute résolution. Cette thèse aborde le problème de la stéréovision d’une manière neuromorphique par l’intermédiaire d’une nouvelle génération de capteurs de vision appelés ”rétines de silicium”. Ces rétines de silicium imitent les rétines biologiques en capturant l’information visuelle sous forme de flux asynchrones d’événements codant les changements de contraste avec une grande précision temporelle. Ces capteurs sont utilisés pour étudier l’importance de la précision et de la dynamiquetemporelledelascènedansleproblèmedemiseencorrespondance stéréo. Nous proposons une des premières méthodes de reconstruction 3D capable de produire des modèles 3D d’une manière totalement asynchrone, á partir de l’information visuelle. Cette approche, outre son originalité, permet également de préserver la dynamique native de la scène. Cette thèse montre que le temps en tant que medium d’information, joue un rôle primordial dans la stéréovision. Le temps peut compléter, compenser, voire remplacer l’information apportée habituellement par la luminance et la géométrie. Ce travail établit également les fondations solides des futures recherches en vision stéréo á haute vitesse et haute dynamique, basée sur les événements. Il ouvre également de nouvelles perspectives prometteuses pour la résolution de problèmes traditionels de vision artificielle grâce à l’apport du nouveau paradigme de la vision asynchrone. / Reproducing biological vision in a machine is a challenging problem for which scientists have just scratched the surface. Living organisms are able to per- form complex tasks in an awestruckly efficient manner. The stereovision is one of these complex mechanisms that computer scientists try to replicate with high resolution cameras. This thesis takes on the stereovision problem in a neuromorphic way by mean of a new generation of vision sensors also called ”silicon retinas”. These silicon retinas mimic biological retinas by cap- turing the visual information into the form of asynchronous stream of events that encode contrast change at high temporal precision. These sensors are used to study the importance of the precise timing and the scene temporal dynamics in solving the stereo correspondence problem. We propose one of the first 3D reconstruction methods which is able to produce 3Dmodelsinatrulyevent-basedandasynchronousmanner, fromevent-based visual information. Besides the novelty of proposing a truly temporal- based asynchronous event-driven approach of 3D reconstructions, this work is also able to preserve the native dynamic of the scene. Time as information medium is proven to have a critical role in stereovision. Time can supplement, compensate and even replace the usual luminance and spatial information. This work lays strong foundations for future research on high temporal and event-based dynamic stereo vision. It also opens new promisingperspectivesforsolvingtraditionalmachinevisionproblemsthanks to the use of the new asynchronous vision paradigm.
8

Jonctions tunnel magnétiques stochastiques pour le calcul bioinspiré / Stochastic magnetic tunnel junctions for bioinspired computing

Mizrahi, Alice 11 January 2017 (has links)
Les jonctions tunnel magnétiques sont des candidats prometteurs for le calcul. Mais quand elles sont réduites à des dimensions nanométriques, conserver leur stabilité devient difficile. Les jonctions tunnel magnétiques instables subissent des renversements aléatoires de leur aimantation et se comportent comme des oscillateurs stochastiques. Pourtant, la nature stochastique de ces jonctions tunnel superparamagnétiques n’est pas une faille mais un atout qui peut être utilisé pour le calcul bio-inspiré. En effet, notre cerveau a évolué de sorte qu’il puisse fonctionner dans un environnement bruité et avec des composants instables. Dans cette thèse, nous montrons plusieurs applications possibles des jonctions tunnel superparamagnétiques.Nous démontrons qu’une junction tunnel superparamagnétique peut être synchronisée en fréquence et en phase à une faible tension oscillante. De manière contre intuitive, notre expérience montre que cela peut être fait grâce à l’injection de bruit dans le système. Nous développons un modèle théorique pour comprendre ce phénomène et prédire qu’il permet un gain énergétique d’un facteur cent par rapport à la synchronisation d’oscillateurs à transfert de spin traditionnels. De plus, nous utilisons notre modèle pour étudier la synchronisation de plusieurs jonctions couplées. De nombreuses méthodes théoriques réalisant des tâches cognitives telles que la reconnaissance de motifs et la classification grâce à la synchronisation d’oscillateurs ont été proposés. Utiliser la synchronisation induite par le bruit de jonctions tunnel superparamagnétiques permettrait de réaliser ces tâches à basse énergie.Nous faisons une analogie entre les jonctions tunnel superparamagnétiques et les neurones sensoriels qui émettent des pics de tension séparés par des intervalles aléatoires. En poursuivant cette analogie, nous démontrons que des populations de jonctions tunnel superparamagnétiques peuvent représenter des distributions de probabilité et réaliser de l’inférence Bayésienne. De plus, nous démontrons que des populations interconnectées peuvent faire du calcul, notamment de l’apprentissage, des transformations de coordonnées et de la fusion sensorielles. Un tel système est faisable de manière réaliste et pourrait permettre de fabriquer des capteurs intelligents à bas coût énergétique. / Magnetic tunnel junctions are promising candidates for computing applications. But when they are reduced to nanoscale dimensions, maintaining their stability becomes an issue. Unstable magnetic tunnel junctions undergo random switches of the magnetization between their two stable states and thus behave as stochastic oscillators. However, the stochastic nature of these superparamagnetic tunnel junctions is not a liability but an asset which can be used for the implementation of bio-inspired computing schemes. Indeed, our brain has evolved to function in a noisy environment and with unstable components. In this thesis, we show several possible applications of superparamagnetic tunnel junctions.We demonstrate how a superparamagnetic tunnel junction can be frequency and phase-locked to a weak oscillating voltage. Counterintuitively, our experiment shows that this is achieved by injecting noise in the system. We develop a theoretical model to understand this phenomenon and predict that it allows a hundred-fold energy gain over the synchronization of traditional dc-driven spin torque oscillators. Furthermore, we leverage our model to study the synchronization of several coupled junctions. Many theoretical schemes using the synchronization of oscillators to perform cognitive tasks such as pattern recognition and classification have been proposed. Using the noise-induced synchronization of superparamagnetic tunnel junctions would allow implementing these tasks at low energy.We draw an analogy between superparamagnetic tunnel junctions and sensory neurons which fire voltage pulses with random time intervals. Pushing this analogy, we demonstrate that populations of junctions can represent probability distributions and perform Bayesian inference. Furthermore, we demonstrate that interconnected populations can perform computing tasks such as learning, coordinate transformations and sensory fusion. Such a system is realistically implementable and could allow for intelligent sensory processing at low energy cost.
9

Rhythms and oscillations : a vision for nanoelectronics / Rythmes et oscillations : une vision pour la nanoélectronique

Vodenicarevic, Damir 15 December 2017 (has links)
Avec l'avènement de l'"intelligence artificielle", les ordinateurs, appareils mobiles et objets connectés sont amenés à dépasser les calculs arithmétiques et logiques pour lesquels ils ont été optimisés durant des décennies, afin d'effectuer des tâches "cognitives" telles que la traduction automatique ou la reconnaissance d'images et de voix, et pour lesquelles ils ne sont pas adaptés. Ainsi, un super-calculateur peut-il consommer des mégawatts pour effectuer des tâches que le cerveau humain traite avec 20 watt. Par conséquent, des système de calcul alternatifs inspirés du cerveau font l'objet de recherches importantes. En particulier, les oscillations neurales semblant être liées à certains traitements de données dans le cerveau ont inspiré des approches détournant la physique complexe des réseaux d'oscillateurs couplés pour effectuer des tâches cognitives efficacement. Cette thèse se fonde sur les avancées récentes en nano-technologies permettant la fabrication de nano-oscillateurs hautement intégrables pour proposer et étudier de nouvelles architectures neuro-inspirées de classification de motifs exploitant la dynamique des oscillateurs couplés et pouvant être implémentées sur puce. / With the advent of "artificial intelligence", computers, mobile devices and other connected objects are being pushed beyond the realm of arithmetic and logic operations, for which they have been optimized over decades, in order to process "cognitive" tasks such as automatic translation and image or voice recognition, for which they are not the ideal substrate. As a result, supercomputers may require megawatts to process tasks for which the human brain only needs 20 watt. This has revived interest into the design of alternative computing schemes inspired by the brain. In particular, neural oscillations that appear to be linked to computational activity in the brain have inspired approaches leveraging the complex physics of networks of coupled oscillators in order to process cognitive tasks efficiently. In the light of recent advances in nano-technology allowing the fabrication of highly integrable nano-oscillators, this thesis proposes and studies novel neuro-inspired oscillator-based pattern classification architectures that could be implemented on chip.
10

Apprentissage local avec des dispositifs de mémoire hautement analogiques / Local learning with highly analog memory devices

Bennett, Christopher H. 08 February 2018 (has links)
Dans la prochaine ère de l'informatique distribuée, les ordinateurs inspirés par le cerveau qui effectuent des opérations localement plutôt que dans des serveurs distants seraient un avantage majeur en réduisant les coûts énergétiques et réduisant l'impact environnemental. Une nouvelle génération de nanodispositifs de mémoire non-volatile est un candidat de premier plan pour réaliser cette vision neuromorphique. À l'aide de travaux théoriques et expérimentaux, nous avons exploré les problèmes critiques qui se posent lors de la réalisation physique des architectures de réseaux de neurones artificiels modernes (ANN) en utilisant des dispositifs de mémoire émergents (nanodispositifs « memristifs »). Dans notre travail expérimental, nos dispositifs organiques (polymeriques) se sont adaptés avec succès et automatiquement en tant que portes logiques reconfigurables en coopérant avec un neurone digital et programmable (FGPA). Dans nos travaux théoriques, nous aussi avons considéré les multicouches memristives ANNs. Nous avons développé et simulé des variantes de projection aléatoire (un système NoProp) et de rétropropagation (un système perceptron multicouche) qui utilisent deux crossbars. Ces systèmes d'apprentissage locaux ont montré des dépendances critiques sur les contraintes physiques des nanodispositifs. Enfin, nous avons examiné comment les conceptions ANNs “feed-forward” peuvent être modi-fiées pour exploiter les effets temporels. Nous avons amélioré la bio-inspiration et la performance du système NoProp, par exemple, avec des effets de plasticité dans la première couche. Ces effets ont été obtenus en utilisant un nanodispositif à ionisation d'argent avec un comportement de transition de plasticité intrinsèque. / In the next era of distributed computing, brain-based computers that perform operations locally rather than in remote servers would be a major benefit in reducing global energy costs. A new generation of emerging nonvolatile memory devices is a leading candidate for achieving this neuromorphic vision. Using theoretical and experimental work, we have explored critical issues that arise when physically realizing modern artificial neural network (ANN) architectures using emerging memory devices (“memristors”). In our experimental work, we showed organic nanosynapses adapting automatically as logic gates via a companion digital neuron and programmable logic cell (FGPA). In our theoretical work, we also considered multilayer memristive ANNs. We have developed and simulated random projection (NoProp) and backpropagation (Multilayer Perceptron) variants that use two crossbars. These local learning systems showed critical dependencies on the physical constraints of nanodevices. Finally, we examined how feed-forward ANN designs can be modified to exploit temporal effects. We focused in particular on improving bio-inspiration and performance of the NoProp system, for example, we improved the performance with plasticity effects in the first layer. These effects were obtained using a silver ionic nanodevice with intrinsic plasticity transition behavior.

Page generated in 0.0568 seconds