• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 3
  • Tagged with
  • 35
  • 17
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication de transistors monoélectroniques pour la détection de charge

Richard, Jean-Philippe January 2013 (has links)
Le transistor monoélectronique (SET) est un candidat que l'on croyait avoir la capacité de remplacer le transistor des circuits intégrés actuel (MOSFET). Pour des raisons de faible gain en voltage, d'impédance de sortie élevée et de sensibilité aux fluctuations de charges, il est considéré aujourd'hui qu'un hybride tirant profit des deux technologies est plus avantageux. En exploitant sa lacune d'être sensible aux variations de charge, le SET est davantage utilisé dans des applications où la détection de charge s'avère indispensable, notamment dans les domaines de la bio-détection et de l'informatique quantique. Ce mémoire présente une étude du transistor monoélectronique utilisé en tant que détecteur de charge. La méthode de fabrication est basée sur le procédé nanodamascène développé par Dubuc et al. [11] permettant au transistor monoélectronique de fonctionner à température ambiante. La température d'opération étant intimement liée à la géométrie du SET, la clé du procédé nanodamascène réside dans le polissage chimico-mécanique (CMP) permettant de réduire l'épaisseur des SET jusqu'à des valeurs de quelques nanamètres. Dans ce projet de maîtrise, nous avons cependant opté pour que le SET soit opéré à température cryogénique. Une faible température d'opération permet le relâchement des contraintes de dimensions des dispositifs. En considérant les variations de procédés normales pouvant survenir lors de la fabrication, la température d'opération maximale calculée en conception s'étend de 27 K à 90 K, soit une énergie de charge de 78 meV à 23 meV. Le gain du détecteur de charge étant dépendant de la distance de couplage, les résultats de simulations démontrent que cette distance doit être de 200 nm pour que la détection de charge soit optimale. Les designs conçus sont ensuite fabriqués sur substrat d'oxyde de silicium. Les résultats de fabrication de SET témoignent de la robustesse du procédé nanodamascène. En effet, les dimensions atteintes expérimentalement s'avèrent quasi identiques à celles calculées en conception. Les mesures électriques à basse température de SET fabriqués démontrent un blocage de Coulomb avec une énergie de charge de 10 meV et une température d'opération maximale de 10 K. Un effet de grille est aussi observé par l'application d'une tension sur la grille latérale et les électrodes d'un SET à proximité. Les paramètres extraits à partir du diamant de Coulomb sont en accord avec les géométries du transistor fabriqué, à l'exception de la capacité degrille et de couplage. Enfin, l'étude de la détection de charge est réalisée par simulation à partir de ces paramètres. Elle permet de conclure que la détection de charge peut être optimisée en augmentant les surfaces de couplage de l'électromètre.
2

Study of terahertz phenomena using GaN devices / Etude de phénomènes terahertz à l'aide de dispositifs GaN

Penot, Alexandre 06 December 2013 (has links)
L'intérêt porté au domaine Terahertz (THz) ayant beau être en pleine expansion depuis les années 1990, un gros effort de recherche doit encore être effectué pour tirer la quintessence des applications actuelles ou potentielles que représente cette gamme du spectre électromagnétique dans des domaines aussi variés que la spectroscopie, la cosmologie, l'imagerie médicale, la sécurité ou les télécommunications. En effet les sources, les détecteurs mais également les outils qui permettent d'amplifier ou de moduler un signal – dispositifs très présents dans les régions voisines du spectre électromagnétique que sont l'infrarouge et les micro-ondes - sont encore particulièrement limités par des facteurs tels que la compacité, la température de fonctionnement, l'intégrabilité mais également la puissance, la sensibilité ou encore le coût.Cette thèse porte sur l'étude expérimentale de divers composants en nitrure de gallium (GaN) contenant un puits quantique avec pour objectif de déterminer leurs capacités d'émission, d'amplification ou de détection d'une radiation THz.Pour ce faire, trois différents dispositifs expérimentaux ont été utilisés, améliorés ou même créés dans le but de pouvoir faire varier des paramètres tels que la polarisation électrique, leur température de fonctionnement, les fréquences THz sondées et bien sûr les différentes géométries des échantillons.De plus amples détails sur le monde des THz, sur les dispositifs électroniques GaN utilisés ainsi que sur les montages expérimentaux mis en places sont développés dans ce manuscrit de thèse. Les principaux résultats expérimentaux obtenus montrent :- une émission vers 3 THz avec une fréquence accordable en fonction du champ électrique appliqué au puits quantique GaN,- un coefficient de transmission variable en fonction de la tension appliquée aux contacts en doigts interdigités de différentes structures GaN,- la détection hétérodyne de radiations avec une fréquence RF de 0,3 THz et IF pouvant monter jusqu'à 40 GHz. De plus, chaque type de résultats expérimentaux a été expliqué théoriquement à l'aide de modèles analytiques développés en collaboration avec des équipes internationales au cours de ces trois dernières années. / Even if the interest upon the Terahertz (THz) domain is increasing since the 1990s, a strong research effort still needs to be done to get the most of the current and potential applications that this area of the electromagnetic spectrum has to offer in the various domains of spectroscopy, cosmology, medical imaging, security and telecommunications. Indeed, sources, detectors and even the tools that permits to amplify or modulate a signal – these devices are well developed in the neighboring regions of infrared and microwaves – are still particularly limited by characteristics like compactness, operating temperature, integrability but also power, sensitivity or cost.This thesis focuses on the experimental study of different gallium nitride (GaN) devices containing a quantum well. The main objective was to determine their capacities in emission, amplification or detection of a THz radiation.To do so, three different experimental setups where used, improved or even created in order to be able to change parameters like the electric bias, their working temperature, the probed THz frequencies and of course the different geometries of the samples.More details about the THz domain, the studied GaN electronic devices and the used experimental setups are developed in this PhD thesis.The main obtained experimental results show:- an emission of radiation near 3 THz with a tunable frequency versus electric field applied to the GaN quantum well,- a transmission coefficient variable as a function of the voltage applied to the contacts of different GaN interdigitated fingers structures,- heterodyne detection of radiation with a RF frequency of 0.3 THz and an IF that can reach up 40 GHz.In addition, each type of experimental results has been investigated theoretically using analytical models developed in collaboration with international teams during the past three years.
3

Excitons indirects dans les puits quantiques de la grande bande interdite / Indirect excitons in wide bandgap semiconductor quantum wells

Fedichkin, Fedor 15 December 2016 (has links)
Cette thèse est consacrée à l'étude expérimentale des excitons dans des puitsquantiques polaires fabriqués à partir de semi-conducteurs à large bande interdite. En raison de la structure de ces matériaux à cristaux wurtzite, les électrons et les trous sont séparés le long de l'axe de croissance du puits quantique, de sorte que les excitons peuvent être considérés comme des excitons indirects (IX) : ils forment une famille de quasi-particules bosoniques à longue durée de vie, dont le moment dipolaire est orienté selon l'axe de croissance du puits. Les IX sont considérés comme un système modéle pour l'étude des états collectifs dans les gaz quantiques bosoniques. Ils sont aussi prometteurs pour le développement de dispositifs excitoniques. Leur longue durée de vie, leur répulsion dipolaire, permettent aux IXs de se déplacer sur de grandes distances avant de se recombiner, ce qui offre la possibilité d'étudier le transport d'exciton par imagerie optique. Dans cette thèse, nous abordons le transport des IXs dans des puits quantiques de GaN/(Al,Ga)N et de ZnO/(Mg,Zn)O. Ce choix de matériau est motivé par l'énergie de liaison élevée des IXs ainsi obtenue. Elle est suffisamment élevée pour, en thèorie, stabiliser les IXs jusqu'à la température ambiante. Mais ce choix poseaussi un certain nombre de défis expérimentaux, car (i) le temps de vie radiatifdépend fortement de la densité d'excitons, ce qui rend la mesure de la densitéexcitonique très complexe ; (ii) la recombinaison non radiative activée thermiquement supprime le signal de photoluminescence excitonique à température ambiante ; (iii) la propagation excitonique coexiste avec une propagation photonique le long du plan du puit quantique, ce qui complique l'analyse ; (iv) il existe un fort champ électrique le long de l'axe de croissance, et aussi desuctuations dans l'épaisseur du puits quantique, ce qui crée un fort élargissement inhomogène de l'émission excitonique. Nous avons abordé toutes ces questions et nous démontrons dans ce travail que les excitons se propagent effectivement dans le plan du puits quantique. Nous arrivons à cette conclusion en combinant des expériences de micro-photoluminescence en régime continu avec des mesures de spectroscopie résolues en temps, et en comparant nos données expérimentales avec divers modèles numériques basés sur les équations dedérive et de diffusion. Dans du matériau de qualité, des puits GaN/(Al,Ga)N obtenus sur substrats GaN, nous avons observé une propagation à temprature ambiante sur plus de 10 µm, et sur plus de 20 µm à 4 K. Nos résultats suggérent que la propagation des excitons sous excitation à onde continue est facilitée par l'écrantage du désordre par les excitons. Néanmoins, la propagation excitonique est encore limitée par la diffusion des excitons sur les défautsiii plutôt que par la diffusion exciton-exciton. Ainsi, l'amélioration de la qualité des interfaces du puits quantique pourrait encore permettre une propagation excitonique sur de plus grandes distances. / This thesis is devoted to experimental study of excitons in polar quantum wells(QWs) based on wide band-gap semiconductors. Due to wurtzite crystal structureof these materials, electron and hole are separated in the QW growth axis, sothat excitons can be considered as indirect excitons (IX), a family of long-living bosonic quasi-particles with dipole moment oriented along the QW growth axis. IX are considered as a model system for studies of collective states in quantum gases of bosons, and are also promising for the development of excitonic circuit devices. Long lifetimes and dipole repulsion allow IXs to travel over large distances before recombination providing the opportunity to study exciton transport by optical imaging. In this thesis we address IX transport in a set of GaN/(Al,Ga)N and ZnO/(Mg,Zn)O QWs. This choice of IX is motivated by high binding energy, and potential stability up to room temperature, but present a number of experimental challenges, including (i) dramatic dependence of the exciton radiative lifetime on the exciton density that makes exciton density measurement very complex, (ii) thermally activated nonradiative recombination that quenches exciton PL at room temperature,(iii) coexistence of photon propagation with exciton propagation along the QW plane, and strong inhomogeneous broadening of the exciton emission due to strong built-in electric field and the presence of both monolayeructuations of the QW thickness and the fluctuations of alloy composition in the barriers. We have addressed all these issues and demonstrated exciton propagation by combining continuous wave µ-photoluminescence and time-resolved spectroscopy measurements, supplemented by modelling of the exciton transport within drift-diffusion formalism. In the best quality GaN/(Al,Ga)N QWs grown on free-standing GaN substrates we achieved room-temperature propagation over ~10 µm and up to 20 µm at 4 K. Our results suggest that propagation of excitons under continuous-wave excitation is assisted by effcient screening of the in-plane disorder. Nevertheless, exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scatteringso that improving interface quality can boost exciton transport further.
4

Réalisation et caractérisation de transistors MOS à base de nanofils verticaux en silicium / Realization and characterization of vertical silicon nanowires MOS transistors

Guerfi, Youssouf 10 December 2015 (has links)
Afin de poursuivre la réduction d'échelle des transistors MOS, l'industrie des semiconducteurs a su anticiper les limitations de la miniaturisation par l'introduction de nouveaux matériaux ou de nouvelles architectures. L'avènement des structures à triples grilles (FinFET) a permis de maitriser les effets canaux courts et poursuivre les efforts de miniaturisation (nœud technologique 14 nm en 2014). Le cas ultime pour le contrôle électrostatique de la grille sur le canal est donné par une grille entourant totalement le canal du dispositif. A cet effet, un transistor à nanofil à grille entourante est considéré comme la structure la plus adaptée pour les nœuds technologiques en dessous de 7 nm. Au cours de cette thèse, un procédé de réalisation large échelle de transistors MOSFET miniaturisés à base de nanofils verticaux en silicium a été développé. Tout d'abord, les nanofils verticaux ont été réalisés par une approche descendante via le transfert par gravure d'un masque de résine en Hydrogène Silsesquioxane (HSQ), réalisé par lithographie électronique à basse tension d'accélération. Une stratégie de dessin inédite dite "en étoile " a été développée pour définir des nanofils parfaitement circulaires. Les nanofils en Si sont obtenus par gravure plasma puis amincis par oxydation humide sacrificielle. Ce procédé permet d'obtenir des nanofils verticaux en Si avec des parois parfaitement anisotropes, une parfaite reproductibilité et un rendement maximal. L'implémentation des MOSFETs sur les réseaux nanofils a été effectuée par l'ingénierie successive de couches minces nanométriques (conductrices et diélectriques). Dans ce cadre, un procédé innovant de réalisation de couches d'isolations en HSQ par gravure chimique contrôlée a démontré une excellente planéité associée à une rugosité de surface inférieure à 2 nm. Enfin, un procédé utilisant la photolithographie UV conventionnelle a été développé pour réaliser le transistor de longueur de grille nanométrique. Ces dispositifs ont démontré d'excellentes performances électriques avec des courants de conduction supérieurs à 600 µA/µm et une excellente maîtrise des effets de canaux courts (pente sous le seuil de 95 mV/dec et DIBL à 25 mV/V) malgré l'extrême miniaturisation de la longueur de grille (15 nm). Enfin, nous présentons une première preuve de concept d'un inverseur CMOS à base de cette technologie à nanofils verticaux. / In order to further downscaling of the MOS transistors, the semiconductor industry has anticipated the limitations of miniaturization by the introduction of new materials and new architectures. The advent of triple gate structures (FinFET) allowed mastering the short channel effects and further miniaturization efforts (14 nm technology node in 2014). The ultimate case to the electrostatic control of the gate on the channel is given by a gate completely surrounding the device channel. For this purpose, Gate All Around (GAA) nanowire transistor is considered as the most suitable structure for technology nodes below 7 nm. In this thesis, a large scale process for the realization of miniaturized MOSFETs based on vertical silicon nanowires has been developed. Firstly, the vertical nanowires were made by a top down approach by the transfer by etching of hard mask made of Hydrogen silsesquioxane (HSQ) resist created at low voltage electron beam lithography. An original design strategy called "star" was developed to define perfectly circular nanowires. Si nanowires are obtained by plasma etching then thinned by sacrificial wet oxidation. This method allows obtaining vertical Si nanowires with perfectly anisotropic walls, a perfect reproducibility and a maximum yield. The implementation of the MOSFETs on the nanowire network was done by successive engineering of nanoscale thin films (conductive and dielectric). In this context, an innovative process for producing insulation layers in HSQ by controlled chemical etching showed excellent flatness associated with surface roughness of less than 2 nm. Finally, a method using conventional UV photolithography has been developed to achieve the nanometer gate length transistor. These devices have demonstrated excellent electrical performances with conduction currents superior than 600 µA/µm and excellent control of short channel effects (subthreshold slope of 95 mV/dec and DIBL of 25 mV/V) despite extreme miniaturization of the gate length (15 nm). Finally, we present a first proof of concept of a CMOS inverter based on vertical nanowires technology.
5

Fabrication de nanoaimants pour le contrôle rapide d'un spin électronique dans une boîte quantique double

Bureau-Oxton, Chloé January 2014 (has links)
Un ordinateur quantique est un ordinateur formé de bits quantiques (qubits) qui tire profit des propriétés quantiques de la matière. Un grand intérêt est porté au développement d’un tel ordinateur depuis qu’il a été montré que le calcul quantique permettrait d’effectuer certains types de calculs exponentiellement plus rapidement qu’avec les meilleurs algorithmes connus sur un ordinateur classique. D’ailleurs, plusieurs algorithmes ont déjà été suggérés pour résoudre efficacement des problèmes tels que la factorisation de grands nombres premiers et la recherche dans des listes désordonnées. Avant d’en arriver à un ordinateur quantique fonctionnel, certains grands défis doivent être surmontés. Un de ces défis consiste à fabriquer des qubits ayant un temps d’opération nettement inférieur au temps de cohérence (temps durant lequel l’état du qubit est conservé). Cette condition est nécessaire pour parvenir à un calcul quantique fiable. Pour atteindre cet objectif, de nombreuses recherches visent à augmenter le temps de cohérence en choisissant judicieusement les matériaux utilisés dans la fabrication des qubits en plus d’imaginer de nouvelles méthodes d’utiliser ces dispositifs pour diminuer la durée des opérations. Une manière simple d’implémenter un qubit est de piéger quelques électrons dans l’espace et d’utiliser l’état de spin de cet ensemble d’électrons pour encoder les états du qubit. Ce type de dispositif porte le nom de qubit de spin. Les boîtes quantiques (BQs) latérales fabriquées sur des substrats de GaAs/AlGaAs sont un exemple de qubit de spin et sont les dispositifs étudiés dans ce mémoire. En 2007, Pioro-Ladrière et al. ont suggéré de placer un microaimant à proximité d’une BQ pour créer un gradient de champ magnétique non-uniforme et permettre d’effectuer des rotations de spin à l’aide d’impulsions électriques rapides. Ce mémoire présente comment modifier la géométrie de ces microaimants pour obtenir un plus grand gradient de champ magnétique dans la BQ. Une nouvelle technique de contrôle de spin menant à des rotations de spin et de phase plus rapides sera aussi détaillée. Enfin, il sera montré que le département de physique de l’Université de Sherbrooke possède tous les outils nécessaires pour implémenter cette méthode.
6

Amélioration des propriétés physiques de matériaux de basse-dimensionnalité par couplage dans des hétérostructures Van der Waals / Enhancing physical properties of low dimensional materials by engineering its environment in composite Van der Waals heterostructures

Nayak, Goutham 18 December 2018 (has links)
Les propriétés intrinsèques extraordinaires de ces matériaux de faible dimension dépendent fortement de l'environnement auquel ils sont soumis. Par conséquent, ils doivent être préparés, traités et caractérisés sans défauts. Dans cette thèse, je discute de la manière de contrôler l'environnement des nanomatériaux de faible dimension tels que le graphène, le MoS$_{2}$ et les nanotubes de carbone afin de préserver leurs propriétés physiques intrinsèques. De nouvelles solutions pour l'amélioration des propriétés sont discutées en profondeur. Dans la première partie, nous fabriquons des dispositifs d'hétérostructure à base de graphène de Van der Waals (VdW) de dernière génération, en contact avec les bords, encapsulés dans du nitrure de bore hexagonal (hBN), afin d'obtenir un transport balistique. Nous utilisons une technique basée sur des mesures de bruit 1 / f pour sonder le transport de masse et de bord lors de régimes Quantum Hall entiers et fractionnaires. Dans la deuxième partie, le même concept de fabrication des hétérostructures VdW a été étendu pour encapsuler la couche monocouche MoS $_{2}$ dans le hBN afin d'en modifier les propriétés optiques. À cet égard, nous présentons une étude approfondie sur l'origine et la caractérisation des défauts intrinsèques et extrinsèques et leur incidence sur les propriétés optiques. En outre, nous décrivons une technique pour sonder le couplage entre couches ainsi que la génération de lumière avec une résolution spatiale inférieure à la limite de diffraction de la lumière. Enfin, nous discutons d'un processus systémique naturel visant à améliorer les propriétés mécaniques de la soie polymérique naturelle à l'aide d'une nanotubes de carbone à paroi unique fabriqués par HipCO comme aliment pour le ver à soie. / The extraordinary intrinsic properties of low dimensional materials depend highly on the environment they are subjected to. Hence they need to be prepared, processed and characterized without defects. In this thesis, I discuss about how to control the environment of low dimensional nanomaterials such as graphene, MoS2 and carbon nanotubes to preserve their intrinsic physical properties. Novel solutions for property enhancements are discussed in depth. In the first part, we fabricate state-of-the-art, edge-contacted, graphene Van der Waals(VdW) heterostructuredevices encapsulated in hexagonal-boron nitride(hBN), to obtain ballistic transport. We use a technique based on 1/f-noise measurements to probe bulk and edge transport during integer and fractional Quantum Hall regimes. In the second part, the same fabrication concept of VdW heterostructures has been extended to encapsulate monolayer MoS2 in hBN to improve optical properties. In this regard we present an extensive study about the origin and characterization of intrinsic and extrinsic defects and their affect on optical properties. Further, we describe a technique to probe the interlayer coupling along with the generation of light with spatialresolution below the diffraction limit of light. Finally, we discuss a natural systemic process to enhance the mechanical properties of natural polymer silk using HipCO-made single walled carbon nanotubes as a food for silkworm.
7

Fabrication de nanoaimants pour le contrôle rapide d'un spin électronique dans une boîte quantique double

Bureau-Oxton, Chloé January 2014 (has links)
Un ordinateur quantique est un ordinateur formé de bits quantiques (qubits) qui tire profit des propriétés quantiques de la matière. Un grand intérêt est porté au développement d’un tel ordinateur depuis qu’il a été montré que le calcul quantique permettrait d’effectuer certains types de calculs exponentiellement plus rapidement qu’avec les meilleurs algorithmes connus sur un ordinateur classique. D’ailleurs, plusieurs algorithmes ont déjà été suggérés pour résoudre efficacement des problèmes tels que la factorisation de grands nombres premiers et la recherche dans des listes désordonnées. Avant d’en arriver à un ordinateur quantique fonctionnel, certains grands défis doivent être surmontés. Un de ces défis consiste à fabriquer des qubits ayant un temps d’opération nettement inférieur au temps de cohérence (temps durant lequel l’état du qubit est conservé). Cette condition est nécessaire pour parvenir à un calcul quantique fiable. Pour atteindre cet objectif, de nombreuses recherches visent à augmenter le temps de cohérence en choisissant judicieusement les matériaux utilisés dans la fabrication des qubits en plus d’imaginer de nouvelles méthodes d’utiliser ces dispositifs pour diminuer la durée des opérations. Une manière simple d’implémenter un qubit est de piéger quelques électrons dans l’espace et d’utiliser l’état de spin de cet ensemble d’électrons pour encoder les états du qubit. Ce type de dispositif porte le nom de qubit de spin. Les boîtes quantiques (BQs) latérales fabriquées sur des substrats de GaAs/AlGaAs sont un exemple de qubit de spin et sont les dispositifs étudiés dans ce mémoire. En 2007, Pioro-Ladrière et al. ont suggéré de placer un microaimant à proximité d’une BQ pour créer un gradient de champ magnétique non-uniforme et permettre d’effectuer des rotations de spin à l’aide d’impulsions électriques rapides. Ce mémoire présente comment modifier la géométrie de ces microaimants pour obtenir un plus grand gradient de champ magnétique dans la BQ. Une nouvelle technique de contrôle de spin menant à des rotations de spin et de phase plus rapides sera aussi détaillée. Enfin, il sera montré que le département de physique de l’Université de Sherbrooke possède tous les outils nécessaires pour implémenter cette méthode.
8

Etude de NEMS à nanofils polycristallins pour la détection et l’intégration hétérogène 3D ultra-dense / Study of polycrystalline nanowire based NEMS for detection and ultra-dense 3D heterogeneous integration

Ouerghi, Issam 04 December 2015 (has links)
Les progrès technologiques de ces dernières années ont permis une très forte intégration des composants de la microélectronique à l'échelle nanométrique. Face aux limites de la miniaturisation classique, les technologies d'intégration en trois dimensions (3D) ouvrent la voie vers des dispositifs miniaturisés hétérogènes avec de nouvelles générations de puces. En parallèle, de nouveaux concepts tels que les nanofils sans jonction et les nanofils en silicium polycristallins permettent à terme d'imaginer des procédés froids et des dispositifs à faible coût permettant une intégration 3D hyperdense sur un CMOS stabilisé. La fabrication de NEMS à base de nanofils polycristallins pour la détection de masse sur CMOS est donc une nouvelle opportunité « More-Than-Moore ». Les capteurs pourraient être disposés en réseau dense en s'inspirant des architectures mémoires et imageurs. L'adressage individuel de chaque NEMS, la possibilité de les fonctionnaliser à la détection de molécules particulières, et la multiplication des capteurs sur une grande surface (« Very Large Integration » (VLSI)) permettraient la mise en œuvre d'un nouveau genre de capteur multi-physique, compact et ultrasensible. Le but de ces travaux de thèse a donc été la fabrication et l'évaluation des performances de NEMS à base de nanofils en poly-silicium. L'enjeu fut de trouver des procédés avec un budget thermique compatible à une intégration sur back-end. Une étude rigoureuse sur les propriétés physico-chimiques de la couche a été corrélée aux performances électriques, mécaniques, ainsi qu'au rendement des NEMS poly-Silicium, ce qui nous a permis de faire une sélection des meilleurs procédés de fabrication. Les NEMS fabriqués à basse température avec une couche active déposée à température ambiante et recristallisée par laser ont montré des performances, que ce soit au niveau de la transduction (piézorésistivité), ou de la stabilité du résonateur compétitives par rapports aux références monocristallines. / Recently, technological advances lead to a very large scale integration (VLSI) of microelectronics components at the nanoscale. Faced with the traditional miniaturization limits, the three dimensions (3D) integration open the door to heterogeneous miniaturized devices, with new chip generations. At the same time, new concepts such as junctionless nanowires and polycrystalline silicon nanowires allow to imagine low temperature processes and low-cost devices for a 3D integration on a stabilized CMOS. Poly-silicon nanowire based NEMS on CMOS for mass detection is a new "More-Than-Moore" opportunity. The NEMS could be arranged in a dense network like memory and image sensor architectures. The individual addressing of each NEMS, the functionalization for the detection of specific molecules within a large area (VLSI), allow the implementation of a new type of Multi-physics sensors, compact and highly sensitive. The purpose of this thesis has been the manufacturing and the performance evaluation of poly-silicon nanowire based NEMS. The challenge was to find the best processes with a back-end compatible thermal budget. A rigorous study of the layer physicochemical properties has been correlated with the electrical, mechanical performances and the yield of poly-silicon NEMS. This allowed us to make a selection of the best fabrication processes. NEMS manufactured at very low temperature with an active layer deposited at room temperature and recrystallized by a laser annealing exhibited high performances in terms of transduction (piezoresistivity) and frequency stability comparable to monocrystalline references. Polycrystalline silicon.
9

Caractérisations physico-chimiques et électriques d’empilements de couches d’oxyde à forte permittivité (high-k) / grille métallique pour l’ajustement du travail effectif de la grille : application aux nouvelles générations de transistors / Study of manufacturing processes and physicochemical characterization of oxides layers with high dielectric constant : application for new generations of transistors

Boujamaa, Rachid 02 October 2013 (has links)
Cette thèse s'inscrit dans le cadre du développement des technologies CMOS 32/28nm chez STMicroelectronics. Elle porte sur l'étude d'empilements de grille métal/diélectrique high-k élaborés selon une stratégie d'intégration Gate First, où le couple TiN/HfSiON est introduit avec une couche interfaciale SiON et une encapsulation de la grille TiN par du polysilicium. Cette étude s'est principalement focalisée sur l'analyse des interactions entre les différentes couches constituant les empilements, en particulier des additifs lanthane et aluminium, employés pour moduler la tension de seuil Vth des transistors NMOS et PMOS respectivement. Les analyses physico-chimiques réalisées au cours de ces travaux ont permis de mettre en évidence la diffusion en profondeur des éléments La et Al à travers le diélectrique de grille HfSiON sous l'effet du recuit d'activation des dopants à 1065°C. Les résultats obtenus ont montré que ce processus de diffusion entraine une réaction du lanthane et de l'aluminium avec la couche interfaciale de SiON pour former un silicate stable La(ou Al)SiO au profit de la couche de SiON. L'analyse des propriétés électrique des structures MOS a permis de révéler que la présence d'atomes La ou Al proximité de l'interface HfSiON/SiON conduit à la présence d'un dipôle généré à cette interface, qui a pour effet de décaler le travail de sortie effectif de la grille métallique. / This thesis is part of the development of CMOS technologies 32/28nm STMicroelectronics. It focuses on the study of stacks of metal / high-k dielectric prepared by an integration strategy Gate First , where the couple TiN / HfSiON gate is introduced with an interfacial layer SiON and encapsulation of TiN gate polysilicon by . The study was mainly focused on the analysis of interactions between the various layers forming the stacks , in particular lanthanum and aluminum additives , used for modulating the threshold voltage Vth of the PMOS and NMOS transistors respectively . The physico-chemical analyzes in this work helped to highlight the depth distribution of the elements La and Al through the HfSiON gate dielectric under the influence of dopant activation annealing at 1065 ° C. The results obtained showed that this diffusion process causes a reaction of lanthanum and aluminum with the interfacial layer of SiON to form a stable silicate La ( or Al ) SiO benefit of the SiON layer . The analysis of electrical properties of MOS structures revealed that the presence of the atoms near the Al or HfSiON / SiON interface leads to the presence of a dipole generated at this interface , which has the effect of shifting actual output work of the metal gate.
10

Hétérostructures de silicium-germanium à dimensionnalité réduite pour la spintronique quantique / Low-dimensional silicon-germanium heterostructures for quantum spintronics

Mizokuchi, Raisei 05 June 2018 (has links)
L’intégration à large échelles de bits quantiques (qubits) nécessite le développement de systèmes quantiques à deux niveaux à l’état solide comme par exemple des spins électroniques confinés dans des boîtes quantiques ou des fermions de Majorana dans des nanofils semiconducteurs.Les trous confinés à une ou deux dimensions dans des hétérostructures à base de germanium sont de bons candidats pour de tels qubits parce qu’ils offrent i) une forte interaction spin-orbite (SOI) conduisant à des facteurs de Landé relativement grands, ii) un couplage hyperfin réduit laissant entrevoir un long de temps de cohérence de spin et iii) des masses efficaces relativement faibles favorisant le confinement quantique. Au cours de cette thèse, j’ai étudié le transport de trous dans des systèmes unidimensionnels et bidimensionnels faits à partir d’hétérostructures Ge/Si_0.2Ge_0.8 à contrainte compressive. Une partie importante de mon travail de recherche a été consacrée au développement de techniques de fabrication pour ces dispositifs semi-conducteurs. J’ai débuté par la fabrication de dispositifs de type "barre de Hall" à partir d’hétérostructures Ge/SiGe non dopées.J’ai étudié deux types d’ hétérostructures contenants un puits quantique de Ge contraint: l’une où le puits de Ge est à la surface de la structure donc facilement accessible aux contacts métalliques, et l’autre où le puitsest enterré à 70nm sous la surface permettant d’avoir une mobilité élevée.Les propriétés électroniques du gaz de trou bidimensionnel confiné dans lepuits de Ge ont été étudiées à travers des mesures de magnéto-transportjusqu’à 0,3 K. Pour le puits enterré, mes mesures ont révélé un caractère dominant de trou lourd, ce qui est attendu dans le cas d’une contrainte compressive en combinaison avec un confinement bidimensionnel. Les dispositifs avec un puits de Ge superficiel ont montré un transport diffusif et un effet d’anti-localisation faible, ce qui est dû à l’interférence quantique de differents chemins de diffusion en présence du SOI. Le fait que le puits de Ge soit situé à la surface permet des champs électriques perpendiculaires relativement grands et, par conséquent, un plus fort SOI de type Rashba. J’ai été en mesure d’estimer l’énergie caractéristique du SOI en obtenant une valeur d’environ 1 meV. Pour la réalisation de nano-dispositifs quantiques,j’ai utilisé l’ hétérostructure avec un puits de Ge enterré où la mobilité des trous se rapproche de 2 × 105 cm2/Vs. En utilisant la lithographie par faisceau d’électrons, des grilles métalliques à l’échelle nanométrique ont été définies sur la surface de l’échantillon afin de créer des constrictions unidimensionnelles dans le gaz de trous bidimensionnel. J’ai ainsi réussi à observer la quantification de la conductance dans des fils quantiques d’une longueur allant jusqu’à ~ 600 nm. Dans ces fils, j’ai étudié l’effet Zeeman sur les sous-bandes unidimensionnelles. J’ai trouvé des grands facteurs g pour le champ magnétique perpendiculaire, et des petits facteurs g dans le plan. Cette forte anisotropie indique un caractère de trou lourd prédominant,ce qui est attendu dans le cas d’un confinement dominant dans la direction perpendiculaire. Les grands facteurs g et le caractère unidimensionnel balistique sont des propriétés favorables à la réalisation de fermions de Majorana. Enfin, j’ai commencé à explorer le potentiel des hétérostructures à base de Ge pour la réalisation de dispositifs à points quantiques, en visant des applications en calcul quantique à base de spin. Au cours des derniers mois, j’ai pu observer des signes évidents de transport à un seul trou, posant ainsi les bases pour des études plus approfondies sur les points quantiques des trous. / Aiming towards largely integrated quantum bits (qubits) requires thedevelopment of solid-state, two-level quantum systems, such as spins inquantum dots or Majorana fermions in one-dimensional wires. Holes confinedin low-dimensional, germanium-based heterostructures are good candidatesfor such qubits because they offer i) large spin-orbit interaction(SOI), leading to conveniently large g factors, ii) reduced hyperfine coupling,which is important for long spin coherence, and iii) relatively loweffective masses, favoring quantum confinement. In this thesis, I have investigatedhole transport in one- and two-dimensional systems made fromcompressively strained Ge/Si_0.2Ge_0.8 heterostructures. An important partof my research work has been devoted to developing the recipes for devicefabrication. I have started from the fabrication of gated Hall bardevices from nominally undoped Ge/SiGe heterostructures. I have studiedtwo types of the heterostructures embedding a strained Ge quantumwell: one where the Ge well is at the surface, hence easily accessible tometal contacts, and one where it is buried 70 nm below the surface, aconfiguration resulting in higher hole mobility. The electronic propertiesof the two-dimensional hole gas confined to the Ge well were studied bymeans of magneto-transport measurements down to 0.3 K. My measurementsrevealed a dominant heavy-hole character, which is expected fromthe presence of a compressive strain in combination with two-dimensionalconfinement. The surface-Ge devices showed diffusive transport and a weakanti-localization effect, which is due to SOI in combination with quantuminterference. The fact that the Ge quantum well is located at the surfaceallows for relatively large perpendicular electric fields and hence enhancedRashba-type SOI. I was able to estimate a spin splitting of around 1 meV.For the realization of quantum nano-devices, I used the heterostructure witha buried Ge well where the hole mobility approaches 2×105 cm2/Vs. Usinge-beam lithography, sub-micron metal gates were defined on sample surfacein order to create one-dimensional constrictions in the two-dimensional holegas. I succeeded in observing conductance quantization in hole quantum wires with a length up to ~ 600 nm. In these wires I investigated the Zeemansplitting of the one-dimensional subbands, finding large perpendicularg-factors as opposed to small in-plane g-factors. This strong anisotropyindicates a prevailing heavy-hole character, which is expected in the caseof a dominant confinement in the perpendicular direction. The large g factorsand the ballistic one-dimensional character are favorable properties forthe realization of Majorana fermions. Finally, I have begun to explore thepotential of Ge-based heterostructures for the realization of quantum-dotdevices, having in mind applications in spin-based quantum computing.During the last months, I was able to observe clear evidence of single-holetransport, laying the ground for more in-depth studies of hole quantumdots.

Page generated in 1.0176 seconds