• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unconventional computing using memristive nanodevices : from digital computing to brain-like neuromorphic accelerator / Calcul non conventionnel avec des nanocomposants memristifs : du calcul numérique aux accélérateurs neuromorphiques

Shahsavari, Mahyar 14 December 2016 (has links)
On estime que le nombre d'objets connectés à l'Internet atteindra 50 à 100 milliards en 2020. La recherche s'organise en deux champs principaux pour répondre à ce défi : l'internet des objets et les grandes masses de données. La demande en puissance de calcul augmente plus vite que le développement de nouvelles architectures matérielles en particulier à cause du ralentissement de la loi de Moore. La raison principale en est le mur de la mémoire, autrement appelé le goulet d'étranglement de Von Neumann, qui vient des différences de vitesse croissantes entre le processeur et la mémoire. En conséquence, il y a besoin d'une nouvelle architecture matérielle rapide et économe en énergie pour répondre aux besoins énormes de puissance de calcul.Dans cette thèse, nous proposons de nouvelles architectures pour les processeurs de prochaine génération utilisant des nanotechnologies émergentes telles que les memristors. Nous étudions des méthodes de calcul non conventionnelles aussi bien numériques qu'analogiques. Notre contribution principale concerne les réseaux de neurones à impulsion (RNI) ou architectures neuromorphiques. Dans la première partie de la thèse, nous passons en revue les memristors existants, étudions leur utilisation dans une architecture numérique à base de crossbars, puis introduisons les architectures neuromorphiques. La deuxième partie contient la contribution principale~: le développement d'un simulateur d'architectures neuromorphiques (N2S3), l'introduction d'un nouveau type de synapse pour améliorer l'apprentissage, une exploration des paramètres en vue d'améliorer les RNI, et enfin une étude de la faisabilité des réseaux profonds dans les RNI. / By 2020, there will be 50 to 100 billion devices connected to the Internet. Two domains of hot research to address these high demands of data processing are the Internet of Things (IoT) and Big Data. The demands of these new applications are increasing faster than the development of new hardware particularly because of the slowdown of Moore's law. The main reason of the ineffectiveness of the processing speed is the memory wall or Von Neumann bottleneck which is coming from speed differences between the processor and the memory. Therefore, a new fast and power-efficient hardware architecture is needed to respond to those huge demands of data processing. In this thesis, we introduce novel high performance architectures for next generation computing using emerging nanotechnologies such as memristors. We have studied unconventional computing methods both in the digital and the analog domains. However, the main focus and contribution is in Spiking Neural Network (SNN) or neuromorphic analog computing. In the first part of this dissertation, we review the memristive devices proposed in the literature and study their applicability in a hardware crossbar digital architecture. At the end of part~I, we review the Neuromorphic and SNN architecture. The second part of the thesis contains the main contribution which is the development of a Neural Network Scalable Spiking Simulator (N2S3) suitable for the hardware implementation of neuromorphic computation, the introduction of a novel synapse box which aims at better learning in SNN platforms, a parameter exploration to improve performance of memristor-based SNN, and finally a study of the application of deep learning in SNN.
2

Theory and modeling of complex nonlinear delay dynamics applied to neuromorphic computing / Théorie et modélisation de la complexité des dynamiques non linéaires à retard : application au calcul neuromorphique.

Penkovsky, Bogdan 21 June 2017 (has links)
Cette thèse développe une nouvelle approche pour la conception d'un reservoir computer, l'un des défis de la science et de la technologie modernes. La thèse se compose de deux parties, toutes deux s'appuyant sur l'analogie entre les systèmes optoelectroniques à retard et les dynamiques spatio-temporelles non linéaires. Dans la première partie (Chapitres 1 et 2) cette analogie est utilisée dans une perspective fondamentale afin d'étudier les formes auto-organisées connues sous le nom d'états Chimère, mis en évidence une première fois comme une conséquence de ces travaux. Dans la deuxième partie (Chapitres 3 et 4) la même analogie est exploitée dans une perspective appliquée afin de concevoir et mettre en oeuvre un concept de traitement de l'information inspiré par le cerveau: un réservoir computer fonctionnant en temps réel est construit dans une puce FPGA, grâce à la mise en oeuvre d'une dynamique à retard et de ses couches d'entrée et de sortie, pour obtenir un système traitement d'information autonome intelligent. / The thesis develops a novel approach to design of a reservoir computer, one of the challenges of modern Science and Technology. It consists of two parts, both connected by the correspondence between optoelectronic delayed-feedback systems and spatio-temporal nonlinear dynamics. In the first part (Chapters 1 and 2), this correspondence is used in a fundamental perspective, studying self-organized patterns known as chimera states, discovered for the first time in purely temporal systems. Study of chimera states may shed light on mechanisms occurring in many structurally similar high-dimensional systems such as neural systems or power grids. In the second part (Chapters 3 and 4), the same spatio-temporal analogy is exploited from an applied perspective, designing and implementing a brain-inspired information processing device: a real-time digital reservoir computer is constructed in FPGA hardware. The implementation utilizes delay dynamics and realizes input as well as output layers for an autonomous cognitive computing system.
3

Définition d'un substrat computationnel bio-inspiré : déclinaison de propriétés de plasticité cérébrale dans les architectures de traitement auto-adaptatif / Design of a bio-inspired computing substrata : hardware plasticity properties for self-adaptive computing architectures

Rodriguez, Laurent 01 December 2015 (has links)
L'augmentation du parallélisme, sur des puces dont la densité d'intégration est en constante croissance, soulève un certain nombre de défis tels que le routage de l'information qui se confronte au problème de "goulot d'étranglement de données", ou la simple difficulté à exploiter un parallélisme massif et grandissant avec les paradigmes de calcul modernes issus pour la plupart, d'un historique séquentiel.Nous nous inscrivons dans une démarche bio-inspirée pour définir un nouveau type d'architecture, basée sur le concept d'auto-adaptation, afin de décharger le concepteur au maximum de cette complexité. Mimant la plasticité cérébrale, cette architecture devient capable de s'adapter sur son environnement interne et externe de manière homéostatique. Il s'inscrit dans la famille du calcul incorporé ("embodied computing") car le substrat de calcul n'est plus pensé comme une boite noire, programmée pour une tâche donnée, mais est façonné par son environnement ainsi que par les applications qu'il supporte.Dans nos travaux, nous proposons un modèle de carte neuronale auto-organisatrice, le DMADSOM (pour Distributed Multiplicative Activity Dependent SOM), basé sur le principe des champs de neurones dynamiques (DNF pour "Dynamic Neural Fields"), pour apporter le concept de plasticité à l'architecture. Ce modèle a pour originalité de s'adapter sur les données de chaque stimulus sans besoin d'un continuum sur les stimuli consécutifs. Ce comportement généralise les cas applicatifs de ce type de réseau car l'activité est toujours calculée selon la théorie des champs neuronaux dynamique. Les réseaux DNFs ne sont pas directement portables sur les technologies matérielles d'aujourd'hui de part leurs forte connectivité. Nous proposons plusieurs solutions à ce problème. La première consiste à minimiser la connectivité et d'obtenir une approximation du comportement du réseau par apprentissage sur les connexions latérales restantes. Cela montre un bon comportement dans certain cas applicatifs. Afin de s'abstraire de ces limitations, partant du constat que lorsqu'un signal se propage de proche en proche sur une topologie en grille, le temps de propagation représente la distance parcourue, nous proposons aussi deux méthodes qui permettent d'émuler, cette fois, l'ensemble de la large connectivité des Neural Fields de manière efficace et proche des technologies matérielles. Le premier substrat calcule les potentiels transmis sur le réseau par itérations successives en laissant les données se propager dans toutes les directions. Il est capable, en un minimum d'itérations, de calculer l'ensemble des potentiels latéraux de la carte grâce à une pondération particulière de l'ensemble des itérations.Le second passe par une représentation à spikes des potentiels qui transitent sur la grille sans cycles et reconstitue l'ensemble des potentiels latéraux au fil des itérations de propagation.Le réseau supporté par ces substrats est capable de caractériser les densités statistiques des données à traiter par l'architecture et de contrôler, de manière distribuée, l'allocation des cellules de calcul. / The increasing degree of parallelism on chip which comes from the always increasing integration density, raises a number of challenges such as routing information that confronts the "bottleneck problem" or the simple difficulty to exploit massive parallelism thanks to modern computing paradigms which derived mostly from a sequential history.In order to discharge the designer of this complexity, we design a new type of bio-inspired self-adaptive architecture. Mimicking brain plasticity, this architecture is able to adapt to its internal and external environment and becomes homeostatic. Belonging to the embodied computing theory, the computing substrate is no longer thought of as a black box, programmed for a given task, but is shaped by its environment and by applications that it supports.In our work, we propose a model of self-organizing neural map, DMADSOM (for Distributed Multiplicative Activity Dependent SOM), based on the principle of dynamic neural fields (DNF for "Dynamic Neural Fields"), to bring the concept of hardware plasticity. This model is able to adapt the data of each stimulus without need of a continuum on consecutive stimuli. This behavior generalizes the case of applications of such networks. The activity remains calculated using the dynamic neural field theory. The DNFs networks are not directly portable onto hardware technology today because of their large connectivity. We propose models that bring solutions to this problem. The first is to minimize connectivity and to approximate the global behavior thanks to a learning rule on the remaining lateral connections. This shows good behavior in some application cases. In order to reach the general case, based on the observation that when a signal travels from place to place on a grid topology, the delay represents the distance, we also propose two methods to emulate the whole wide connectivity of the Neural Field with respect to hardware technology constraints. The first substrate calculates the transmitted potential over the network by iteratively allowing the data to propagate in all directions. It is capable, in a minimum of iterations, to compute the lateral potentials of the map with a particular weighting of all iterations.The second involves a spike representation of the synaptic potential and transmits them on the grid without cycles. This one is hightly customisable and allows a very low complexity while still being capable to compute the lateral potentials.The network supported, by these substrates, is capable of characterizing the statistics densities of the data to be processed by the architecture, and to control in a distributed manner the allocation of computation cells.
4

A deep learning theory for neural networks grounded in physics

Scellier, Benjamin 12 1900 (has links)
Au cours de la dernière décennie, l'apprentissage profond est devenu une composante majeure de l'intelligence artificielle, ayant mené à une série d'avancées capitales dans une variété de domaines. L'un des piliers de l'apprentissage profond est l'optimisation de fonction de coût par l'algorithme du gradient stochastique (SGD). Traditionnellement en apprentissage profond, les réseaux de neurones sont des fonctions mathématiques différentiables, et les gradients requis pour l'algorithme SGD sont calculés par rétropropagation. Cependant, les architectures informatiques sur lesquelles ces réseaux de neurones sont implémentés et entraînés souffrent d’inefficacités en vitesse et en énergie, dues à la séparation de la mémoire et des calculs dans ces architectures. Pour résoudre ces problèmes, le neuromorphique vise à implementer les réseaux de neurones dans des architectures qui fusionnent mémoire et calculs, imitant plus fidèlement le cerveau. Dans cette thèse, nous soutenons que pour construire efficacement des réseaux de neurones dans des architectures neuromorphiques, il est nécessaire de repenser les algorithmes pour les implémenter et les entraîner. Nous présentons un cadre mathématique alternative, compatible lui aussi avec l’algorithme SGD, qui permet de concevoir des réseaux de neurones dans des substrats qui exploitent mieux les lois de la physique. Notre cadre mathématique s'applique à une très large classe de modèles, à savoir les systèmes dont l'état ou la dynamique sont décrits par des équations variationnelles. La procédure pour calculer les gradients de la fonction de coût dans de tels systèmes (qui dans de nombreux cas pratiques ne nécessite que de l'information locale pour chaque paramètre) est appelée “equilibrium propagation” (EqProp). Comme beaucoup de systèmes en physique et en ingénierie peuvent être décrits par des principes variationnels, notre cadre mathématique peut potentiellement s'appliquer à une grande variété de systèmes physiques, dont les applications vont au delà du neuromorphique et touchent divers champs d'ingénierie. / In the last decade, deep learning has become a major component of artificial intelligence, leading to a series of breakthroughs across a wide variety of domains. The workhorse of deep learning is the optimization of loss functions by stochastic gradient descent (SGD). Traditionally in deep learning, neural networks are differentiable mathematical functions, and the loss gradients required for SGD are computed with the backpropagation algorithm. However, the computer architectures on which these neural networks are implemented and trained suffer from speed and energy inefficiency issues, due to the separation of memory and processing in these architectures. To solve these problems, the field of neuromorphic computing aims at implementing neural networks on hardware architectures that merge memory and processing, just like brains do. In this thesis, we argue that building large, fast and efficient neural networks on neuromorphic architectures also requires rethinking the algorithms to implement and train them. We present an alternative mathematical framework, also compatible with SGD, which offers the possibility to design neural networks in substrates that directly exploit the laws of physics. Our framework applies to a very broad class of models, namely those whose state or dynamics are described by variational equations. This includes physical systems whose equilibrium state minimizes an energy function, and physical systems whose trajectory minimizes an action functional (principle of least action). We present a simple procedure to compute the loss gradients in such systems, called equilibrium propagation (EqProp), which requires solely locally available information for each trainable parameter. Since many models in physics and engineering can be described by variational principles, our framework has the potential to be applied to a broad variety of physical systems, whose applications extend to various fields of engineering, beyond neuromorphic computing.

Page generated in 0.0736 seconds