• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plate-forme d'aide à l'éco-conception de systèmes multiphysiques : démarche énergétique pour la validation et la réduction de modèles / Platform support for multiphysic systems green design : energetic approach for model validation and reduction

Marques, Julien 17 June 2010 (has links)
De nos jours, les évolutions technologiques imposent aux ingénieurs de modéliser desphénomènes toujours plus multiphysiques et complexes tout au long du processus dedéveloppement d’un système : le cycle en V. Pour cela, il est primordial d’avoir à disposition desoutils adaptés et performants, afin de réduire les temps de mise sur le marché, tout en obtenantdes produits plus matures et plus économes en énergie. Les travaux présentés ici décrivent lamise en place d’une plate-forme de prototypage virtuel et l’intérêt d’intégrer des considérationsénergétiques dans toutes les étapes de la modélisation. Cette approche permet, par exemple, dequantifier l’efficacité d’un système et de ses composants, et donc d’optimiser au plus tôt le coûténergétique d’une solution technique. Nous avons, dans un second temps, souhaité répondre àla problématique du « modèle le plus adapté ». Après analyse des différentes méthodes deréduction de modèles, nous avons décidé de développer la méthode PEMRA permettant depallier les limitations de la méthode MORA, introduite par Louca et al. en 1997. Les variables depuissance et d’énergie introduites précédemment sont utilisées pour calculer deux nouveauxcritères dans le processus de réduction de modèles, permettant de converger vers un modèleréduit plus simple et plus précis qu’avec la méthode MORA. Nous montrons enfin qu’enchoisissant judicieusement le signal d’excitation et un critère dit de précision temporelle adapté, ilest possible, par une approche innovante à la fois énergétique et fréquentielle, de trouver unmodèle réduit mieux adapté aux exigences imposées par l’utilisateur. / Nowadays, technological evolutions are leading engineers to model increasingly multiphysic andcomplex phenomena throughout the systems design process: the V-cycle. Adapted and efficientsystems design tools are therefore necessary in order to reduce time-to-market, while stillensuring fully developed and energy-saving products. First, this work describes the set-up of avirtual prototyping platform and highlights the interest of integrating energetic aspects in allmodelling stages. For example, this approach enables to quantify the system and components’efficiency, and therefore to optimise earlier in the process the energy consumption of a technicalsolution. Secondly, the problematic of the “Proper Model” has been addressed. After the study ofthe model reduction methodologies, we decide to develop PEMRA in order to compensate forlimitations of the MORA methodology, introduced by Louca et al. in 1997. The previous powerand energy variables are then used to compute two new model reduction criteria, in order toobtain a simpler and more accurate reduced model than with MORA methodology. Finally, weshow that a well-defined excitation signal and a new adapted temporal validation criterion willlead, with this innovative energy- and frequency-based approach, to a better suited reducedmodel.
2

matlab scripts: mmc periodic signal model

Fehr, Hendrik 21 July 2021 (has links)
Calculate solutions of a dynamic MMC energy-based model, when the system variables, i.e. the voltages and currents, are given as periodic signals. The signals are represented by a finite number distinct frequency components. As a result, the arm energies and cell voltages are given in this signal domain and can easily be translated to time domain as well.:cplx_series.m cplx_series_demo.m energy_series.m denergy_series.m check_symmetry.m transf2arm.m LICENSE.GNU_AGPLv3 sconv2.m
3

Training deep convolutional architectures for vision

Desjardins, Guillaume 08 1900 (has links)
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs. / High-level vision tasks such as generic object recognition remain out of reach for modern Artificial Intelligence systems. A promising approach involves learning algorithms, such as the Arficial Neural Network (ANN), which automatically learn to extract useful features for the task at hand. For ANNs, this represents a difficult optimization problem however. Deep Belief Networks have thus been proposed as a way to guide the discovery of intermediate representations, through a greedy unsupervised training of stacked Restricted Boltzmann Machines (RBM). The articles presented here-in represent contributions to this field of research. The first article introduces the convolutional RBM. By mimicking local receptive fields and tying the parameters of hidden units within the same feature map, we considerably reduce the number of parameters to learn and enforce local, shift-equivariant feature detectors. This translates to better likelihood scores, compared to RBMs trained on small image patches. In the second article, recent discoveries in neuroscience motivate an investigation into the impact of higher-order units on visual classification, along with the evaluation of a novel activation function. We show that ANNs with quadratic units using the softsign activation function offer better generalization error across several tasks. Finally, the third article gives a critical look at recently proposed RBM training algorithms. We show that Contrastive Divergence (CD) and Persistent CD are brittle in that they require the energy landscape to be smooth in order for their negative chain to mix well. PCD with fast-weights addresses the issue by performing small model perturbations, but may result in spurious samples. We propose using simulated tempering to draw negative samples. This leads to better generative models and increased robustness to various hyperparameters.
4

Training deep convolutional architectures for vision

Desjardins, Guillaume 08 1900 (has links)
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs. / High-level vision tasks such as generic object recognition remain out of reach for modern Artificial Intelligence systems. A promising approach involves learning algorithms, such as the Arficial Neural Network (ANN), which automatically learn to extract useful features for the task at hand. For ANNs, this represents a difficult optimization problem however. Deep Belief Networks have thus been proposed as a way to guide the discovery of intermediate representations, through a greedy unsupervised training of stacked Restricted Boltzmann Machines (RBM). The articles presented here-in represent contributions to this field of research. The first article introduces the convolutional RBM. By mimicking local receptive fields and tying the parameters of hidden units within the same feature map, we considerably reduce the number of parameters to learn and enforce local, shift-equivariant feature detectors. This translates to better likelihood scores, compared to RBMs trained on small image patches. In the second article, recent discoveries in neuroscience motivate an investigation into the impact of higher-order units on visual classification, along with the evaluation of a novel activation function. We show that ANNs with quadratic units using the softsign activation function offer better generalization error across several tasks. Finally, the third article gives a critical look at recently proposed RBM training algorithms. We show that Contrastive Divergence (CD) and Persistent CD are brittle in that they require the energy landscape to be smooth in order for their negative chain to mix well. PCD with fast-weights addresses the issue by performing small model perturbations, but may result in spurious samples. We propose using simulated tempering to draw negative samples. This leads to better generative models and increased robustness to various hyperparameters.
5

Probability flows in deep learning

Huang, Chin-Wei 10 1900 (has links)
Les modèles génératifs basés sur la vraisemblance sont des éléments fondamentaux pour la modélisation statistique des données structurées. Ils peuvent être utilisés pour synthétiser des échantillons de données réalistes, et la fonction de vraisemblance peut être utilisée pour comparer les modèles et déduire diverses quantités statistiques. Cependant, le défi réside dans le développement de modèles capables de saisir avec précision les schémas statistiques présentés dans la distribution des données. Les modèles existants rencontrent souvent des limitations en termes de flexibilité représentationnelle et d’évolutivité computationnelle en raison du choix de la paramétrisation, freinant ainsi la progression vers cet idéal. Cette thèse présente une exploration systématique des structures appropriées qui peuvent être exploitées pour concevoir des modèles génératifs basés sur la vraisemblance, allant des architectures spécialisées telles que les applications triangulaires et les applications de potentiel convexes aux systèmes dynamiques paramétriques tels que les équations différentielles neuronales qui présentent des contraintes minimales en termes de paramétrisation. Les modèles proposés sont fondés sur des motivations théoriques et sont analysés à travers le prisme du changement de variable associé au processus de génération de données. Cette perspective permet de considérer ces modèles comme des formes distinctes de probability flows, unifiant ainsi des classes apparemment non liées de modèles génératifs basés sur la vraisemblance. De plus, des conceptions algorithmiques pratiques sont introduites pour calculer, approximer ou estimer les quantités nécessaires pour l’apprentissage et l’évaluation. Il est prévu que cette thèse suscite l’intérêt des communautés de modélisation générative et d’apprentissage automatique Bayésien/probabiliste, et qu’elle serve de ressource précieuse et d’inspiration pour les chercheurs et les praticiens du domaine. / Likelihood-based generative models are fundamental building blocks for statistical modeling of structured data. They can be used to synthesize realistic data samples, and the likelihood function can be used for comparing models and inferring various statistical quantities. However, the challenge lies in developing models capable of accurately capturing the statistical patterns presented in the data distribution. Existing models often face limitations in representational flexibility and computational scalability due to the choice of parameterization, impeding progress towards this ideal. This thesis presents a systematic exploration of suitable structures that can be exploited to design likelihood-based generative models, spanning from specialized architectures like triangular maps and convex potential maps to parametric dynamical systems such as neural differential equations that bear minimal parameterization restrictions. The proposed models are rooted in theoretical foundations and analyzed through the lens of the associated change of variable in the data generation process. This perspective allows for viewing these models as distinct forms of probability flows, thereby unifying seemingly unrelated classes of likelihood-based generative models. Moreover, practical algorithmic designs are introduced to compute, approximate, or estimate necessary quantities for training and testing purposes. It is anticipated that this thesis would be of interest to the generative modeling and Bayesian/probabilistic machine learning communities, and will serve as a valuable resource and inspiration for both researchers and practitioners in the field.
6

A deep learning theory for neural networks grounded in physics

Scellier, Benjamin 12 1900 (has links)
Au cours de la dernière décennie, l'apprentissage profond est devenu une composante majeure de l'intelligence artificielle, ayant mené à une série d'avancées capitales dans une variété de domaines. L'un des piliers de l'apprentissage profond est l'optimisation de fonction de coût par l'algorithme du gradient stochastique (SGD). Traditionnellement en apprentissage profond, les réseaux de neurones sont des fonctions mathématiques différentiables, et les gradients requis pour l'algorithme SGD sont calculés par rétropropagation. Cependant, les architectures informatiques sur lesquelles ces réseaux de neurones sont implémentés et entraînés souffrent d’inefficacités en vitesse et en énergie, dues à la séparation de la mémoire et des calculs dans ces architectures. Pour résoudre ces problèmes, le neuromorphique vise à implementer les réseaux de neurones dans des architectures qui fusionnent mémoire et calculs, imitant plus fidèlement le cerveau. Dans cette thèse, nous soutenons que pour construire efficacement des réseaux de neurones dans des architectures neuromorphiques, il est nécessaire de repenser les algorithmes pour les implémenter et les entraîner. Nous présentons un cadre mathématique alternative, compatible lui aussi avec l’algorithme SGD, qui permet de concevoir des réseaux de neurones dans des substrats qui exploitent mieux les lois de la physique. Notre cadre mathématique s'applique à une très large classe de modèles, à savoir les systèmes dont l'état ou la dynamique sont décrits par des équations variationnelles. La procédure pour calculer les gradients de la fonction de coût dans de tels systèmes (qui dans de nombreux cas pratiques ne nécessite que de l'information locale pour chaque paramètre) est appelée “equilibrium propagation” (EqProp). Comme beaucoup de systèmes en physique et en ingénierie peuvent être décrits par des principes variationnels, notre cadre mathématique peut potentiellement s'appliquer à une grande variété de systèmes physiques, dont les applications vont au delà du neuromorphique et touchent divers champs d'ingénierie. / In the last decade, deep learning has become a major component of artificial intelligence, leading to a series of breakthroughs across a wide variety of domains. The workhorse of deep learning is the optimization of loss functions by stochastic gradient descent (SGD). Traditionally in deep learning, neural networks are differentiable mathematical functions, and the loss gradients required for SGD are computed with the backpropagation algorithm. However, the computer architectures on which these neural networks are implemented and trained suffer from speed and energy inefficiency issues, due to the separation of memory and processing in these architectures. To solve these problems, the field of neuromorphic computing aims at implementing neural networks on hardware architectures that merge memory and processing, just like brains do. In this thesis, we argue that building large, fast and efficient neural networks on neuromorphic architectures also requires rethinking the algorithms to implement and train them. We present an alternative mathematical framework, also compatible with SGD, which offers the possibility to design neural networks in substrates that directly exploit the laws of physics. Our framework applies to a very broad class of models, namely those whose state or dynamics are described by variational equations. This includes physical systems whose equilibrium state minimizes an energy function, and physical systems whose trajectory minimizes an action functional (principle of least action). We present a simple procedure to compute the loss gradients in such systems, called equilibrium propagation (EqProp), which requires solely locally available information for each trainable parameter. Since many models in physics and engineering can be described by variational principles, our framework has the potential to be applied to a broad variety of physical systems, whose applications extend to various fields of engineering, beyond neuromorphic computing.

Page generated in 0.0728 seconds