Spelling suggestions: "subject:"duystème neuromorphic"" "subject:"duystème neurotrophique""
1 |
Development of filamentary Memristive devices for synaptic plasticity implementation / Développement des dispositifs memristifs filamentaires pour l'implémentation de la plasticité synaptiqueLa Barbera, Selina 18 December 2015 (has links)
Reproduire les fonctionnalités du cerveau représente un défi majeur dans le domaine des technologies de l’information et de la communication. Plus particulièrement, l’ingénierie neuromorphique, qui vise à implémenter au niveau matériel les propriétés de traitement de l’information du cerveau, apparait une direction de recherche prometteuse. Parmi les différentes stratégies poursuivies dans ce domaine, la proposition de composant memristif a permis d’envisager la réalisation des fonctionnalités des synapses et de répondre potentiellement aux problématiques d’intégration. Dans cette dissertation, nous présenterons comment les fonctionnalités synaptiques avancées peuvent être réalisées à partir de composants mémoires memristifs. Nous présentons une revue de l’état de l’art dans le domaine de l’ingénierie neuromorphique. En nous intéressant à la physique des composants mémoires filamentaires de type cellules électrochimiques, nous démontrons comment les processus de mémoire à court terme et de mémoire à long terme présents dans les synapses biologiques peuvent être réalisés en contrôlant la croissance de filaments de type dendritiques. Ensuite nous implémentons dans ces composants une fonctionnalité synaptique basée sur la corrélation temporelle entre les signaux provenant des neurones d’entrée et de sortie. Ces deux approches sont ensuite analysées à partir d’un modèle inspiré de la biologie permettant de mettre l’accent sur l’analogie entre synapses biologiques et composants mémoires filamentaires. Finalement, à partir de cette approche de modélisation, nous évaluons les potentialités de ces composants mémoires pour la réalisation de fonctions neuromorphiques concrètes. / Replicating the computational functionalities of the brain remains one of the biggest challenges for the future of information and communication technologies. In this context, neuromorphic engineering appears a very promising direction. In this context memristive devices have been recently proposed for the implementation of synaptic functions, offering the required features and integration potentiality in a single component. In this dissertation, we present how advanced synaptic features can be implemented in memristive nanodevices. By exploiting the physical properties of filamentary switching, we successfully implemented a non-Hebbian plasticity form corresponding to the synaptic adaptation. We demonstrate that complex filament shape, such as dendritic paths of variable density and width, can reproduce short- and long- term processes observed in biological synapses and can be conveniently controlled by achieving a flexible way to program the device memory state and the relative state volatility. Then, we show that filamentary switching can be additionally controlled to reproduce a Hebbian plasticity form that corresponds to an increase of the synaptic weight when time correlation between pre- and post-neuron firing is experienced at the synaptic connection. We interpreted our results in the framework of a phenomenological model developed for biological synapses. Finally, we exploit this model to investigate how spike-based systems can be realized for memory and computing applications. These results pave the way for future engineering of neuromorphic computing systems, where complex behaviors of memristive physics can be exploited.
|
2 |
Conception et fabrication de neurones artificiels pour le traitement bioinspiré de l'information / Conception and fabrication of artificial neuron for bioinspired information processingHedayat, Sara 18 September 2018 (has links)
Actuellement, les technologies du traitement d'information ont atteint leurs limites et il devient donc urgent de proposer de nouveaux paradigmes capables de réduire la consommation d'énergie tout en augmentant la capacité de calcul des ordinateurs. Le cerveau humain est un fascinant et puissant organe, avec ses 300 milliards de cellule, il est capable d’effectuer des taches cognitives en consommant 20W. Dans ce contexte nous avons investiguer un nouveau paradigme appelé "neuromorphic computing" ou le traitement bio-inspiré de l'information.L'objectif de cette thèse est de concevoir et de fabriquer un neurone artificiel a très faible consommation utilisant les récentes avancées scientifiques dans les neurosciences et les nanotechnologies. Premièrement, on a investigué le fonctionnement d'un neurone vivant, sa membrane neuronale et nous avons exploré 3 différents modèles de membranes connues sous le nom de Hodgkin Huxley, Wei et Morris Lecar. Deuxièmement, en se basant sur le modèle de Morris Lecar, nous avons réalisé des neurones artificiels analogiques à spike avec différentes constantes de temps. Puis ils ont été fabriqués avec la technologie 65nm CMOS. Par la suite, nous les avons caractérisés et obtenu des performances dépassant l’état de l’art en terme de surface occupée, puissance dissipée et efficacité énergétique. Finalement, on a analysé et comparé le bruit dans ces neurones artificiels avec le bruit dans des neurones biologiques et on a démontré expérimentalement le phénomène de résonance stochastique. Ces neurones artificiels peuvent être extrêmement utiles pour une large variété d’application allant du traitement de données à l’application médicale. / Current computing technology has now reached its limits and it becomes thus urgent to propose new paradigms for information processing capable of reducing the energy consumption while improving the computing performances. Moreover, the human brain, is a fascinating and powerful organ with remarkable performances in areas as varied as learning, creativity, fault tolerance. Furthermore, with its total 300 billion cells, is able to perform complex cognitive tasks by consuming only around 20W. In this context, we investigated a new paradigm called neuromorphic or bio-inspired information processing.More precisely, the purpose of this thesis was to design and fabricate an ultra-low power artificial neuron using recent advances in neuroscience and nanotechnology. First, we investigated the functionalities of living neurons, their neuronal membrane and explored different membrane models known as Hodgkin Huxley, Wei and Morris Lecar models. Second, based on the Morris Lecar model, we designed analog spiking artificial neurons with different time constants and these neurons were fabricated using 65nm CMOS technology. Then we characterized these artificial neurons and obtained state of the art performances in terms of area, dissipated power and energy efficiency. Finally we investigated the noise within these artificial neurons, compared it with the biological sources of noise in a living neuron and experimentally demonstrated the stochastic resonance phenomenon. These artificial neurons can be extremely useful for a large variety of applications, ranging from data analysis (image and video processing) to medical aspect (neuronal implants).
|
3 |
Contribution à la conception d'architecture de calcul auto-adaptative intégrant des nanocomposants neuromorphiques et applications potentiellesBichler, Olivier 14 November 2012 (has links) (PDF)
Dans cette thèse, nous étudions les applications potentielles des nano-dispositifs mémoires émergents dans les architectures de calcul. Nous montrons que des architectures neuro-inspirées pourraient apporter l'efficacité et l'adaptabilité nécessaires à des applications de traitement et de classification complexes pour la perception visuelle et sonore. Cela, à un cout moindre en termes de consommation énergétique et de surface silicium que les architectures de type Von Neumann, grâce à une utilisation synaptique de ces nano-dispositifs. Ces travaux se focalisent sur les dispositifs dit "memristifs", récemment (ré)-introduits avec la découverte du memristor en 2008 et leur utilisation comme synapse dans des réseaux de neurones impulsionnels. Cela concerne la plupart des technologies mémoire émergentes : mémoire à changement de phase - "Phase-Change Memory" (PCM), "Conductive-Bridging RAM" (CBRAM), mémoire résistive - "Resistive RAM" (RRAM)... Ces dispositifs sont bien adaptés pour l'implémentation d'algorithmes d'apprentissage non supervisés issus des neurosciences, comme "Spike-Timing-Dependent Plasticity" (STDP), ne nécessitant que peu de circuit de contrôle. L'intégration de dispositifs memristifs dans des matrices, ou "crossbar", pourrait en outre permettre d'atteindre l'énorme densité d'intégration nécessaire pour ce type d'implémentation (plusieurs milliers de synapses par neurone), qui reste hors de portée d'une technologie purement en "Complementary Metal Oxide Semiconductor" (CMOS). C'est l'une des raisons majeures pour lesquelles les réseaux de neurones basés sur la technologie CMOS n'ont pas eu le succès escompté dans les années 1990. A cela s'ajoute la relative complexité et inefficacité de l'algorithme d'apprentissage de rétro-propagation du gradient, et ce malgré tous les aspects prometteurs des architectures neuro-inspirées, tels que l'adaptabilité et la tolérance aux fautes. Dans ces travaux, nous proposons des modèles synaptiques de dispositifs memristifs et des méthodologies de simulation pour des architectures les exploitant. Des architectures neuro-inspirées de nouvelle génération sont introduites et simulées pour le traitement de données naturelles. Celles-ci tirent profit des caractéristiques synaptiques des nano-dispositifs memristifs, combinées avec les dernières avancées dans les neurosciences. Nous proposons enfin des implémentations matérielles adaptées pour plusieurs types de dispositifs. Nous évaluons leur potentiel en termes d'intégration, d'efficacité énergétique et également leur tolérance à la variabilité et aux défauts inhérents à l'échelle nano-métrique de ces dispositifs. Ce dernier point est d'une importance capitale, puisqu'il constitue aujourd'hui encore la principale difficulté pour l'intégration de ces technologies émergentes dans des mémoires numériques.
|
4 |
Contribution à la conception d'architecture de calcul auto-adaptative intégrant des nanocomposants neuromorphiques et applications potentielles / Adaptive Computing Architectures Based on Nano-fabricated ComponentsBichler, Olivier 14 November 2012 (has links)
Dans cette thèse, nous étudions les applications potentielles des nano-dispositifs mémoires émergents dans les architectures de calcul. Nous montrons que des architectures neuro-inspirées pourraient apporter l'efficacité et l'adaptabilité nécessaires à des applications de traitement et de classification complexes pour la perception visuelle et sonore. Cela, à un cout moindre en termes de consommation énergétique et de surface silicium que les architectures de type Von Neumann, grâce à une utilisation synaptique de ces nano-dispositifs. Ces travaux se focalisent sur les dispositifs dit «memristifs», récemment (ré)-introduits avec la découverte du memristor en 2008 et leur utilisation comme synapse dans des réseaux de neurones impulsionnels. Cela concerne la plupart des technologies mémoire émergentes : mémoire à changement de phase – «Phase-Change Memory» (PCM), «Conductive-Bridging RAM» (CBRAM), mémoire résistive – «Resistive RAM» (RRAM)... Ces dispositifs sont bien adaptés pour l'implémentation d'algorithmes d'apprentissage non supervisés issus des neurosciences, comme «Spike-Timing-Dependent Plasticity» (STDP), ne nécessitant que peu de circuit de contrôle. L'intégration de dispositifs memristifs dans des matrices, ou «crossbar», pourrait en outre permettre d'atteindre l'énorme densité d'intégration nécessaire pour ce type d'implémentation (plusieurs milliers de synapses par neurone), qui reste hors de portée d'une technologie purement en «Complementary Metal Oxide Semiconductor» (CMOS). C'est l'une des raisons majeures pour lesquelles les réseaux de neurones basés sur la technologie CMOS n'ont pas eu le succès escompté dans les années 1990. A cela s'ajoute la relative complexité et inefficacité de l'algorithme d'apprentissage de rétro-propagation du gradient, et ce malgré tous les aspects prometteurs des architectures neuro-inspirées, tels que l'adaptabilité et la tolérance aux fautes. Dans ces travaux, nous proposons des modèles synaptiques de dispositifs memristifs et des méthodologies de simulation pour des architectures les exploitant. Des architectures neuro-inspirées de nouvelle génération sont introduites et simulées pour le traitement de données naturelles. Celles-ci tirent profit des caractéristiques synaptiques des nano-dispositifs memristifs, combinées avec les dernières avancées dans les neurosciences. Nous proposons enfin des implémentations matérielles adaptées pour plusieurs types de dispositifs. Nous évaluons leur potentiel en termes d'intégration, d'efficacité énergétique et également leur tolérance à la variabilité et aux défauts inhérents à l'échelle nano-métrique de ces dispositifs. Ce dernier point est d'une importance capitale, puisqu'il constitue aujourd'hui encore la principale difficulté pour l'intégration de ces technologies émergentes dans des mémoires numériques. / In this thesis, we study the potential applications of emerging memory nano-devices in computing architecture. More precisely, we show that neuro-inspired architectural paradigms could provide the efficiency and adaptability required in some complex image/audio processing and classification applications. This, at a much lower cost in terms of power consumption and silicon area than current Von Neumann-derived architectures, thanks to a synaptic-like usage of these memory nano-devices. This work is focusing on memristive nano-devices, recently (re-)introduced by the discovery of the memristor in 2008 and their use as synapses in spiking neural network. In fact, this includes most of the emerging memory technologies: Phase-Change Memory (PCM), Conductive-Bridging RAM (CBRAM), Resistive RAM (RRAM)... These devices are particularly suitable for the implementation of natural unsupervised learning algorithms like Spike-Timing-Dependent Plasticity (STDP), requiring very little control circuitry.The integration of memristive devices in crossbar array could provide the huge density required by this type of architecture (several thousand synapses per neuron), which is impossible to match with a CMOS-only implementation. This can be seen as one of the main factors that hindered the rise of CMOS-based neural network computing architectures in the nineties, among the relative complexity and inefficiency of the back-propagation learning algorithm, despite all the promising aspects of such neuro-inspired architectures, like adaptability and fault-tolerance. In this work, we propose synaptic models for memristive devices and simulation methodologies for architectural design exploiting them. Novel neuro-inspired architectures are introduced and simulated for natural data processing. They exploit the synaptic characteristics of memristives nano-devices, along with the latest progresses in neurosciences. Finally, we propose hardware implementations for several device types. We assess their scalability and power efficiency potential, and their robustness to variability and faults, which are unavoidable at the nanometric scale of these devices. This last point is of prime importance, as it constitutes today the main difficulty for the integration of these emerging technologies in digital memories.
|
5 |
Utilisation des nano-composants électroniques dans les architectures de traitement associées aux imageurs / Integration of memory nano-devices in image sensors processing architectureRoclin, David 16 December 2014 (has links)
En utilisant les méthodes d’apprentissages tirées des récentes découvertes en neuroscience, les réseaux de neurones impulsionnels ont démontrés leurs capacités à analyser efficacement les grandes quantités d’informations provenant de notre environnement. L’implémentation de ces circuits à l’aide de processeurs classiques ne permet pas d’exploiter efficacement leur parallélisme. L’utilisation de mémoire numérique pour implémenter les poids synaptique ne permet pas la lecture ou la programmation parallèle des synapses et est limité par la bande passante reliant la mémoire à l’unité de calcul. Les technologies mémoire de type memristive pourrait permettre l’implémentation de ce parallélisme au coeur de la mémoire.Dans cette thèse, nous envisageons le développement d’un réseau de neurones impulsionnels dédié au monde de l’embarqué à base de dispositif mémoire émergents. Dans un premier temps, nous avons analysé un réseau impulsionnel afin d’optimiser ses différentes composantes : neurone, synapse et méthode d’apprentissage STDP en vue d’une implémentation numérique. Dans un second temps, nous envisageons l’implémentation de la mémoire synaptique par des dispositifs memristifs. Enfin, nous présentons le développement d’une puce co-intégrant des neurones implémentés en CMOS avec des synapses en technologie CBRAM. / By using learning mechanisms extracted from recent discoveries in neuroscience, spiking neural networks have demonstrated their ability to efficiently analyze the large amount of data from our environment. The implementation of such circuits on conventional processors does not allow the efficient exploitation of their parallelism. The use of digital memory to implement the synaptic weight does not allow the parallel reading or the parallel programming of the synapses and it is limited by the bandwidth of the connection between the memory and the processing unit. Emergent memristive memory technologies could allow implementing this parallelism directly in the heart of the memory.In this thesis, we consider the development of an embedded spiking neural network based on emerging memory devices. First, we analyze a spiking network to optimize its different components: the neuron, the synapse and the STDP learning mechanism for digital implementation. Then, we consider implementing the synaptic memory with emergent memristive devices. Finally, we present the development of a neuromorphic chip co-integrating CMOS neurons with CBRAM synapses.
|
Page generated in 0.0814 seconds