• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • Tagged with
  • 35
  • 35
  • 35
  • 17
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low-bit Quantization-aware Training of Spiking Neural Networks

Shymyrbay, Ayan 04 1900 (has links)
Deep neural networks are proven to be highly effective tools in various domains, yet their computational and memory costs restrict them from being widely deployed on portable devices. The recent rapid increase of edge computing devices has led to an active search for techniques to address the above-mentioned limitations of machine learning frameworks. The quantization of artificial neural networks (ANNs), which converts the full-precision synaptic weights into low-bit versions, emerged as one of the solutions. At the same time, spiking neural networks (SNNs) have become an attractive alternative to conventional ANNs due to their temporal information processing capability, energy efficiency, and high biological plausibility. Despite being driven by the same motivation, the simultaneous utilization of both concepts has not been fully studied. Therefore, this thesis work aims to bridge the gap between recent progress in quantized neural networks and SNNs. It presents an extensive study on the performance of the quantization function, represented as a linear combination of sigmoid functions, exploited in low-bit weight quantization in SNNs. The given quantization function demonstrates the state-of-the-art performance on four popular benchmarks, CIFAR10-DVS, DVS128 Gesture, N-Caltech101, and N-MNIST, for binary networks (64.05%, 95.45%, 68.71%, and 99.365 respectively) with small accuracy drops (8.03%, 1.18%, 3.47%, and 0.17% respectively) and up to 32x memory savings, which outperforms the existing methods.
2

A Memristor-Based Liquid State Machine for Auditory Signal Recognition

Henderson, Stephen Alexander, Jr. 09 August 2021 (has links)
No description available.
3

Fantastic spiking neural networks and how to train them

Weinberg, David January 2021 (has links)
Spiking neural networks are a new generation of neural networks that use neuronal models that are more biologically plausible than the typically used perceptron model. They do not use analog values to perform computations, as is the case in regular neural networks, but rely on spatio-temporal information encoded into sequences of delta-functions known as spike trains. Spiking neural networks are highly energy efficient compared to regular neural networks which makes them highly attractive in certain applications. This thesis implements two approaches for training spiking neural networks. The first approach uses surrogate gradient descent to deal with the issues of non-differentiability that arise with training spiking neural networks. The second approach is based on Bayesian probability theory and uses variational inference for parameter estimation and leads to a Bayesian spiking neural network. The two methods are tested on two datasets from the spiking neural network literature and limited hyperparameter studies are performed. The results indicate that both training methods work on the two datasets but that the Bayesian implementation yields a lower accuracy on test data. Moreover, the Bayesian implementation appear to be robust to the choice of prior parameter distribution. / <p>Sekretess</p>
4

Online optimisation of information transmission in stochastic spiking neural systems

Kourkoulas-Chondrorizos, Alexandros January 2012 (has links)
An Information Theoretic approach is used for studying the effect of noise on various spiking neural systems. Detailed statistical analyses of neural behaviour under the influence of stochasticity are carried out and their results related to other work and also biological neural networks. The neurocomputational capabilities of the neural systems under study are put on an absolute scale. This approach was also used in order to develop an optimisation framework. A proof-of-concept algorithm is designed, based on information theory and the coding fraction, which optimises noise through maximising information throughput. The algorithm is applied with success to a single neuron and then generalised to an entire neural population with various structural characteristics (feedforward, lateral, recurrent connections). It is shown that there are certain positive and persistent phenomena due to noise in spiking neural networks and that these phenomena can be observed even under simplified conditions and therefore exploited. The transition is made from detailed and computationally expensive tools to efficient approximations. These phenomena are shown to be persistent and exploitable under a variety of circumstances. The results of this work provide evidence that noise can be optimised online in both single neurons and neural populations of varying structures.
5

DHyANA : neuromorphic architecture for liquid computing / DHyANA : uma arquitetura digital neuromórfica hierárquica para máquinas de estado líquido

Holanda, Priscila Cavalcante January 2016 (has links)
Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas, são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros têm aumentado os esforços para o compreender e simular. Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o que alguns denominam o despertar global de pesquisa da neurociência. Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de conexões necessária ao enorme número de neurônios e sinapses. Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações de Máquinas de Estado Líquido. A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma implementação de 256 neurônios. / Neural Networks has been a subject of research for at least sixty years. From the effectiveness in processing information to the amazing ability of tolerating faults, there are countless processing mechanisms in the brain that fascinates us. Thereupon, it comes with no surprise that as enabling technologies have become available, scientists and engineers have raised the efforts to understand, simulate and mimic parts of it. In a similar approach to that of the Human Genome Project, the quest for innovative technologies within the field has given birth to billion dollar projects and global efforts, what some call a global blossom of neuroscience research. Advances in hardware have made the simulation of millions or even billions of neurons possible. However, existing approaches cannot yet provide the even more dense interconnect for the massive number of neurons and synapses required. In this regard, this work proposes DHyANA (Digital HierArchical Neuromorphic Architecture), a new hardware architecture for a spiking neural network using hierarchical network-on-chip communication. The architecture is optimized for Liquid State Machine (LSM) implementations. DHyANA was exhaustively tested in simulation platforms, as well as implemented in an Altera Stratix IV FPGA. Furthermore, a logic synthesis analysis using 65-nm CMOS technology was performed in order to evaluate and better compare the resulting system with similar designs, achieving an area of 0.23mm2 and a power dissipation of 147mW for a 256 neurons implementation.
6

Heterogeneous probabilistic models for optimisation and modelling of evolving spiking neural networks

Schliebs, Stefan January 2010 (has links)
This thesis proposes a novel feature selection and classification method employing evolving spiking neural networks (eSNN) and evolutionary algorithms (EA). The method is named the Quantum-inspired Spiking Neural Network (QiSNN) framework. QiSNN represents an integrated wrapper approach. An evolutionary process evolves appropriate feature subsets for a given classification task and simultaneously optimises the neural and learning-related parameters of the network. Unlike other methods, the connection weights of this network are determined by a fast one-pass learning algorithm which dramatically reduces the training time. In its core, QiSNN employs the Thorpe neural model that allows the efficient simulation of even large networks. In QiSNN, the presence or absence of features is represented by a string of concatenated bits, while the parameters of the neural network are continuous. For the exploration of these two entirely different search spaces, a novel Estimation of Distribution Algorithm (EDA) is developed. The method maintains a population of probabilistic models specialised for the optimisation of either binary, continuous or heterogeneous search spaces while utilising a small and intuitive set of parameters. The EDA extends the Quantum-inspired Evolutionary Algorithm (QEA) proposed by Han and Kim (2002) and was named the Heterogeneous Hierarchical Model EDA (hHM-EDA). The algorithm is compared to numerous contemporary optimisation methods and studied in terms of convergence speed, solution quality and robustness in noisy search spaces. The thesis investigates the functioning and the characteristics of QiSNN using both synthetic feature selection benchmarks and a real-world case study on ecological modelling. By evolving suitable feature subsets, QiSNN significantly enhances the classification accuracy of eSNN. Compared to numerous other feature selection techniques, like the wrapper-based Multilayer Perceptron (MLP) and the Naive Bayesian Classifier (NBC), QiSNN demonstrates a competitive classification and feature selection performance while requiring comparatively low computational costs.
7

Heterogeneous probabilistic models for optimisation and modelling of evolving spiking neural networks

Schliebs, Stefan January 2010 (has links)
This thesis proposes a novel feature selection and classification method employing evolving spiking neural networks (eSNN) and evolutionary algorithms (EA). The method is named the Quantum-inspired Spiking Neural Network (QiSNN) framework. QiSNN represents an integrated wrapper approach. An evolutionary process evolves appropriate feature subsets for a given classification task and simultaneously optimises the neural and learning-related parameters of the network. Unlike other methods, the connection weights of this network are determined by a fast one-pass learning algorithm which dramatically reduces the training time. In its core, QiSNN employs the Thorpe neural model that allows the efficient simulation of even large networks. In QiSNN, the presence or absence of features is represented by a string of concatenated bits, while the parameters of the neural network are continuous. For the exploration of these two entirely different search spaces, a novel Estimation of Distribution Algorithm (EDA) is developed. The method maintains a population of probabilistic models specialised for the optimisation of either binary, continuous or heterogeneous search spaces while utilising a small and intuitive set of parameters. The EDA extends the Quantum-inspired Evolutionary Algorithm (QEA) proposed by Han and Kim (2002) and was named the Heterogeneous Hierarchical Model EDA (hHM-EDA). The algorithm is compared to numerous contemporary optimisation methods and studied in terms of convergence speed, solution quality and robustness in noisy search spaces. The thesis investigates the functioning and the characteristics of QiSNN using both synthetic feature selection benchmarks and a real-world case study on ecological modelling. By evolving suitable feature subsets, QiSNN significantly enhances the classification accuracy of eSNN. Compared to numerous other feature selection techniques, like the wrapper-based Multilayer Perceptron (MLP) and the Naive Bayesian Classifier (NBC), QiSNN demonstrates a competitive classification and feature selection performance while requiring comparatively low computational costs.
8

DHyANA : neuromorphic architecture for liquid computing / DHyANA : uma arquitetura digital neuromórfica hierárquica para máquinas de estado líquido

Holanda, Priscila Cavalcante January 2016 (has links)
Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas, são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros têm aumentado os esforços para o compreender e simular. Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o que alguns denominam o despertar global de pesquisa da neurociência. Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de conexões necessária ao enorme número de neurônios e sinapses. Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações de Máquinas de Estado Líquido. A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma implementação de 256 neurônios. / Neural Networks has been a subject of research for at least sixty years. From the effectiveness in processing information to the amazing ability of tolerating faults, there are countless processing mechanisms in the brain that fascinates us. Thereupon, it comes with no surprise that as enabling technologies have become available, scientists and engineers have raised the efforts to understand, simulate and mimic parts of it. In a similar approach to that of the Human Genome Project, the quest for innovative technologies within the field has given birth to billion dollar projects and global efforts, what some call a global blossom of neuroscience research. Advances in hardware have made the simulation of millions or even billions of neurons possible. However, existing approaches cannot yet provide the even more dense interconnect for the massive number of neurons and synapses required. In this regard, this work proposes DHyANA (Digital HierArchical Neuromorphic Architecture), a new hardware architecture for a spiking neural network using hierarchical network-on-chip communication. The architecture is optimized for Liquid State Machine (LSM) implementations. DHyANA was exhaustively tested in simulation platforms, as well as implemented in an Altera Stratix IV FPGA. Furthermore, a logic synthesis analysis using 65-nm CMOS technology was performed in order to evaluate and better compare the resulting system with similar designs, achieving an area of 0.23mm2 and a power dissipation of 147mW for a 256 neurons implementation.
9

DHyANA : neuromorphic architecture for liquid computing / DHyANA : uma arquitetura digital neuromórfica hierárquica para máquinas de estado líquido

Holanda, Priscila Cavalcante January 2016 (has links)
Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas, são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros têm aumentado os esforços para o compreender e simular. Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o que alguns denominam o despertar global de pesquisa da neurociência. Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de conexões necessária ao enorme número de neurônios e sinapses. Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações de Máquinas de Estado Líquido. A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma implementação de 256 neurônios. / Neural Networks has been a subject of research for at least sixty years. From the effectiveness in processing information to the amazing ability of tolerating faults, there are countless processing mechanisms in the brain that fascinates us. Thereupon, it comes with no surprise that as enabling technologies have become available, scientists and engineers have raised the efforts to understand, simulate and mimic parts of it. In a similar approach to that of the Human Genome Project, the quest for innovative technologies within the field has given birth to billion dollar projects and global efforts, what some call a global blossom of neuroscience research. Advances in hardware have made the simulation of millions or even billions of neurons possible. However, existing approaches cannot yet provide the even more dense interconnect for the massive number of neurons and synapses required. In this regard, this work proposes DHyANA (Digital HierArchical Neuromorphic Architecture), a new hardware architecture for a spiking neural network using hierarchical network-on-chip communication. The architecture is optimized for Liquid State Machine (LSM) implementations. DHyANA was exhaustively tested in simulation platforms, as well as implemented in an Altera Stratix IV FPGA. Furthermore, a logic synthesis analysis using 65-nm CMOS technology was performed in order to evaluate and better compare the resulting system with similar designs, achieving an area of 0.23mm2 and a power dissipation of 147mW for a 256 neurons implementation.
10

Learning transformation-invariant visual representations in spiking neural networks

Evans, Benjamin D. January 2012 (has links)
This thesis aims to understand the learning mechanisms which underpin the process of visual object recognition in the primate ventral visual system. The computational crux of this problem lies in the ability to retain specificity to recognize particular objects or faces, while exhibiting generality across natural variations and distortions in the view (DiCarlo et al., 2012). In particular, the work presented is focussed on gaining insight into the processes through which transformation-invariant visual representations may develop in the primate ventral visual system. The primary motivation for this work is the belief that some of the fundamental mechanisms employed in the primate visual system may only be captured through modelling the individual action potentials of neurons and therefore, existing rate-coded models of this process constitute an inadequate level of description to fully understand the learning processes of visual object recognition. To this end, spiking neural network models are formulated and applied to the problem of learning transformation-invariant visual representations, using a spike-time dependent learning rule to adjust the synaptic efficacies between the neurons. The ways in which the existing rate-coded CT (Stringer et al., 2006) and Trace (Földiák, 1991) learning mechanisms may operate in a simple spiking neural network model are explored, and these findings are then applied to a more accurate model using realistic 3-D stimuli. Three mechanisms are then examined, through which a spiking neural network may solve the problem of learning separate transformation-invariant representations in scenes composed of multiple stimuli by temporally segmenting competing input representations. The spike-time dependent plasticity in the feed-forward connections is then shown to be able to exploit these input layer dynamics to form individual stimulus representations in the output layer. Finally, the work is evaluated and future directions of investigation are proposed.

Page generated in 0.0916 seconds