• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 21
  • 19
  • 17
  • 16
  • 14
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spiking Neural Networks for Low-Power Medical Applications

Smith IV, Lyle Clifford 27 August 2024 (has links)
Artificial intelligence is a swiftly growing field, and many are researching whether AI can serve as a diagnostic aid in the medical domain. However, the primary weakness of traditional machine learning for many applications is energy efficiency, and this may hamper its ability to be effectively utilized in medicine for portable or edge systems. In order to be more effective, new energy-efficient machine learning paradigms must be investigated for medical applications. In addition, smaller models with fewer parameters would be better suited to medical edge systems. By processing data as a series of "spikes" instead of continuous values, spiking neural networks (SNN) may be the right model architecture to address these concerns. This work investigates the proposed advantages of SNNs compared to more traditional architectures when tested on various medical datasets. We compare the energy efficiency of SNN and recurrent neural network (RNN) solutions by finding sizes of each architecture that achieve similar accuracy. The energy consumption of each comparable network is assessed using standard tools for such evaluation. On the SEED human emotion dataset, SNN architectures achieved up to 20x lower energy per inference than an RNN while maintaining similar classification accuracy. SNNs also achieved 30x lower energy consumption on the PTB-XL ECG dataset with similar classification accuracy. These results show that spiking neural networks are more energy efficient than traditional machine learning models at inference time while maintaining a similar level of accuracy for various medical classification tasks. With this superior energy efficiency, this makes it possible for medical SNNs to operate on edge and portable systems. / Master of Science / As artificial intelligence grows in popularity, especially with the rise of new large language models like Chat-GPT, a weakness in traditional architectures becomes more pronounced. These AI models require ever-increasing amounts of energy to operate. Thus, there is a need for more energy-efficient AI models, such as the spiking neural network (SNN). In SNNs, information is processed in a series of spiking signals, like the biological brain. This allows the resulting architecture to be highly energy efficient and adapted to processing time-series data. A domain that often encounters time-series data and would benefit from greater energy efficiency is medicine. This work seeks to investigate the proposed advantages of spiking neural networks when applied to the various classification tasks in the medical domain. Specifically, both an SNN and a traditional recurrent neural network (RNN) were trained on medical datasets for brain signal and heart signal classification. Sizes of each architecture were found that achieved similar classification accuracy and the energy consumption of each comparable network was assessed. For the SEED brain signal dataset, the SNN achieved similar classification accuracy to the RNN while consuming as little as 5% of the energy per inference. Similarly, the SNN consumed 30x less energy than the RNN while classifying the PTB-XL ECG dataset. These results show that the SNN architecture is a more energy efficient model than traditional RNNs for various medical tasks at inference time and may serve as the solution to the energy consumption problem of medical AI.
2

ACCELERATION OF SPIKING NEURAL NETWORK ON GENERAL PURPOSE GRAPHICS PROCESSORS

Han, Bing 05 May 2010 (has links)
No description available.
3

Spiking Neural Networks: Neuron Models, Plasticity, and Graph Applications

Donachy, Shaun 01 January 2015 (has links)
Networks of spiking neurons can be used not only for brain modeling but also to solve graph problems. With the use of a computationally efficient Izhikevich neuron model combined with plasticity rules, the networks possess self-organizing characteristics. Two different time-based synaptic plasticity rules are used to adjust weights among nodes in a graph resulting in solutions to graph prob- lems such as finding the shortest path and clustering.
4

Real time Spaun on SpiNNaker : functional brain simulation on a massively-parallel computer architecture

Mundy, Andrew January 2017 (has links)
Model building is a fundamental scientific tool. Increasingly there is interest in building neurally-implemented models of cognitive processes with the intention of modelling brains. However, simulation of such models can be prohibitively expensive in both the time and energy required. For example, Spaun - "the world's first functional brain model", comprising 2.5 million neurons - required 2.5 hours of computation for every second of simulation on a large compute cluster. SpiNNaker is a massively parallel, low power architecture specifically designed for the simulation of large neural models in biological real time. Ideally, SpiNNaker could be used to facilitate rapid simulation of models such as Spaun. However the Neural Engineering Framework (NEF), with which Spaun is built, maps poorly to the architecture - to the extent that models such as Spaun would consume vast portions of SpiNNaker machines and still not run as fast as biology. This thesis investigates whether real time simulation of Spaun on SpiNNaker is at all possible. Three techniques which facilitate such a simulation are presented. The first reduces the memory, compute and network loads consumed by the NEF. Consequently, it is demonstrated that only a twentieth of the cores are required to simulate a core component of the Spaun network than would otherwise have been needed. The second technique uses a small number of additional cores to significantly reduce the network traffic required to simulated this core component. As a result simulation in real time is shown to be feasible. The final technique is a novel logic minimisation algorithm which reduces the size of the routing tables which are used to direct information around the SpiNNaker machine. This last technique is necessary to allow the routing of models of the scale and complexity of Spaun. Together these provide the ability to simulate the Spaun model in biological real time - representing a speed-up of 9000 times over previously reported results - with room for much larger models on full-scale SpiNNaker machines.
5

Learning in large-scale spiking neural networks

Bekolay, Trevor January 2011 (has links)
Learning is central to the exploration of intelligence. Psychology and machine learning provide high-level explanations of how rational agents learn. Neuroscience provides low-level descriptions of how the brain changes as a result of learning. This thesis attempts to bridge the gap between these two levels of description by solving problems using machine learning ideas, implemented in biologically plausible spiking neural networks with experimentally supported learning rules. We present three novel neural models that contribute to the understanding of how the brain might solve the three main problems posed by machine learning: supervised learning, in which the rational agent has a fine-grained feedback signal, reinforcement learning, in which the agent gets sparse feedback, and unsupervised learning, in which the agents has no explicit environmental feedback. In supervised learning, we argue that previous models of supervised learning in spiking neural networks solve a problem that is less general than the supervised learning problem posed by machine learning. We use an existing learning rule to solve the general supervised learning problem with a spiking neural network. We show that the learning rule can be mapped onto the well-known backpropagation rule used in artificial neural networks. In reinforcement learning, we augment an existing model of the basal ganglia to implement a simple actor-critic model that has a direct mapping to brain areas. The model is used to recreate behavioural and neural results from an experimental study of rats performing a simple reinforcement learning task. In unsupervised learning, we show that the BCM rule, a common learning rule used in unsupervised learning with rate-based neurons, can be adapted to a spiking neural network. We recreate the effects of STDP, a learning rule with strict time dependencies, using BCM, which does not explicitly remember the times of previous spikes. The simulations suggest that BCM is a more general rule than STDP. Finally, we propose a novel learning rule that can be used in all three of these simulations. The existence of such a rule suggests that the three types of learning examined separately in machine learning may not be implemented with separate processes in the brain.
6

Learning in large-scale spiking neural networks

Bekolay, Trevor January 2011 (has links)
Learning is central to the exploration of intelligence. Psychology and machine learning provide high-level explanations of how rational agents learn. Neuroscience provides low-level descriptions of how the brain changes as a result of learning. This thesis attempts to bridge the gap between these two levels of description by solving problems using machine learning ideas, implemented in biologically plausible spiking neural networks with experimentally supported learning rules. We present three novel neural models that contribute to the understanding of how the brain might solve the three main problems posed by machine learning: supervised learning, in which the rational agent has a fine-grained feedback signal, reinforcement learning, in which the agent gets sparse feedback, and unsupervised learning, in which the agents has no explicit environmental feedback. In supervised learning, we argue that previous models of supervised learning in spiking neural networks solve a problem that is less general than the supervised learning problem posed by machine learning. We use an existing learning rule to solve the general supervised learning problem with a spiking neural network. We show that the learning rule can be mapped onto the well-known backpropagation rule used in artificial neural networks. In reinforcement learning, we augment an existing model of the basal ganglia to implement a simple actor-critic model that has a direct mapping to brain areas. The model is used to recreate behavioural and neural results from an experimental study of rats performing a simple reinforcement learning task. In unsupervised learning, we show that the BCM rule, a common learning rule used in unsupervised learning with rate-based neurons, can be adapted to a spiking neural network. We recreate the effects of STDP, a learning rule with strict time dependencies, using BCM, which does not explicitly remember the times of previous spikes. The simulations suggest that BCM is a more general rule than STDP. Finally, we propose a novel learning rule that can be used in all three of these simulations. The existence of such a rule suggests that the three types of learning examined separately in machine learning may not be implemented with separate processes in the brain.
7

The Evaluation of Current Spiking Neural Network Conversion Methods in Radar Data

Smith, Colton C. January 2021 (has links)
No description available.
8

Méthode de calcul et implémentation d’un processeur neuromorphique appliqué à des capteurs évènementiels / Computational method and neuromorphic processor design applied to event-based sensors

Mesquida, Thomas 20 December 2018 (has links)
L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retranscrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données envoyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels, nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel. Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons capteurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neuronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée, ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus, n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés fournissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplacement d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromorphiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de nouvelles solutions de traitement. Plus précisément, les applications et le matériel développés s’appuient sur un codage temporel de l’information dans la suite d'événements fournis par le capteur. / Studying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors.
9

Action learning experiments using spiking neural networks and humanoid robots

de Azambuja, Ricardo January 2018 (has links)
The way our brain works is still an open question, but one thing seems to be clear: biological neural systems are computationally powerful, robust and noisy. Natural nervous system are able to control limbs in different scenarios with high precision. As neural networks in living beings communicate through spikes, modern neuromorphic systems try to mimic them by using spike-based neuron models. This thesis is focused on the advancement of neurorobotics or brain inspired robotic arm controllers based on artificial neural network architectures. The architecture chosen to implement those controllers was the spike neuron version of Reservoir Computing framework, called Liquid State Machines. The main goal is to explore the possibility of using brain inspired neural networks to control a robot by demonstration. Moreover, it aims to achieve systems robust to environmental noise and internal structure destruction presenting a graceful degradation. As the validation, a series of action learning experiments are presented where simulated robotic arms are controlled. The investigation starts with a 2 degrees of freedom arm and moves to the research version of the Rethink Robotics Inc. collaborative humanoid robot Baxter. Moreover, a proof-of- concept experiment is also done using the real Baxter robot. The results show Liquid State Machines, when endowed with an extra external feedback loop, can be also employed to control more complex humanoid robotic arms than a simple planar 2 degrees of freedom one. Additionally, the new parallel architecture presented here was capable to withstand noise and internal destruction better than a simple use of multiple columns also presenting a graceful degradation behaviour.
10

Energy Efficient Hardware Design of Neural Networks

January 2018 (has links)
abstract: Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. Energy efficient implementation of these computationally intense algorithms on neuromorphic hardware demands a lot of architectural optimizations. One of these optimizations would be the reduction in the network size using compression and several studies investigated compression by introducing element-wise or row-/column-/block-wise sparsity via pruning and regularization. Additionally, numerous recent works have concentrated on reducing the precision of activations and weights with some reducing to a single bit. However, combining various sparsity structures with binarized or very-low-precision (2-3 bit) neural networks have not been comprehensively explored. Output activations in these deep neural network algorithms are habitually non-binary making it difficult to exploit sparsity. On the other hand, biologically realistic models like spiking neural networks (SNN) closely mimic the operations in biological nervous systems and explore new avenues for brain-like cognitive computing. These networks deal with binary spikes, and they can exploit the input-dependent sparsity or redundancy to dynamically scale the amount of computation in turn leading to energy-efficient hardware implementation. This work discusses configurable spiking neuromorphic architecture that supports multiple hidden layers exploiting hardware reuse. It also presents design techniques for minimum-area/-energy DNN hardware with minimal degradation in accuracy. Area, performance and energy results of these DNN and SNN hardware is reported for the MNIST dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 - 773 (nJ) per classification). The optimized DNN hardware designed in 40nm CMOS that combines 8X structured compression and 3-bit weight precision showed 98.4% accuracy at 33 (nJ) per classification. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018

Page generated in 0.0702 seconds