Au cours des dernières décennies, les observations de glace de glacier enfouie exposée dans les falaises côtières et les glissements de terrain causés par le dégel du pergélisol arctique démontrent que des quantités importantes de glace de glacier ont survécu à la déglaciation et sont toujours préservées dans le pergélisol. Le premier volet de cette étude visait à caractériser des expositions de la glace massive observée à l’île Bylot, au Nunavut, afin de connaitre l’origine de la glace. Puisque la glace de glacier enfouie peut jouer un rôle important dans l’évolution des paysages périglaciaires, cette thèse s’intéresse également au rôle joué par la glace de glacier enfouie dans l'initiation et l’évolution de lacs de thermokarst. Nos résultats démontrent que le pergélisol de l'île Bylot contient des restes de glace de glacier du Pléistocène qui ont survécu aux dernières déglaciations. Dans la vallée Qarlikturvik, des masses de glace intraglaciaire (dérivée du névé) sont associées à un courant de glace de l’inlandsis laurentidien qui recouvrait une partie de la plaine sud de l’île vers la fin du Pléistocène. Cette masse de glace formait une zone de convergence avec les glaciers alpins locaux s'écoulant de la calotte glaciaire centrée sur les monts Byam Martin. Sur l’un des plateaux bordant la vallée Qarlikturvik, une masse de glace de glacier enfouie est associée à la partie basale d'un glacier dont l’âge minimal est estimé à environ 0.77 Ma, mais pourrait être aussi vieux que 2.6 Ma. En raison de sa localisation, à environ 500 m d’altitude, la glace proviendrait vraisemblablement d’une avancée glaciaire régionale et pourrait être associée à la Glaciation de Baffin, soit la plus vieille avancée glaciaire régionale reconnue sur l'île Bylot. De plus, cette glace représente le plus vieux reste de glacier connu en Amérique du Nord et l’une des premières indications de glaciations dans l’est de l’Arctique canadien. La persistance et la fonte tardive de ces épaisses couches de glace de glacier datant du Pléistocène ont eu des effets importants sur le paysage de l'île Bylot, notamment sur les lacs. En effet, nos résultats démontrent que l'initiation des lacs profonds (> 5 m) est liée à la fonte de la glace de glacier enfouie. Ces lacs de thermokarst glaciaire continueront d’évoluer dans un contexte périglaciaire par la fonte de la glace intrasédimentaire (p. ex., glace de ségrégation) et des coins de glace formés ultérieurement dans les sédiments encaissants lors de l’aggradation du pergélisol suivant le retrait glaciaire. Alors qu’une grande partie des paysages arctiques est encore fortement déterminée par leur héritage glaciaire, la fonte de ces masses de glace aura un impact important sur la dynamique des géosystèmes et écosystèmes arctiques. / Over the past decades, observations of buried glacier ice exposed in coastal bluffs and headwalls of retrogressive thaw slumps of the Arctic have indicated that considerable amounts of late Pleistocene glacier ice survived the deglaciation and are still preserved in permafrost. The first phase of this project aimed to characterize two exposures of massive ice observed on Bylot Island (Nunavut) to infer their origins. Since buried glacier ice can play a significant role in reshaping periglacial landscapes, this study also investigates the initiation and development of thermokarst lakes in a tundra valley in response to the melting of buried glacier ice. Our results show that the permafrost of Bylot Island contains remnants of Pleistocene glacier ice that survived the past deglaciations. In the Qarlikturvik valley, bodies of englacial ice (firn-derived) originated from an ice stream flowing from the Laurentide Ice Sheet, which covered part of the southern plain of the island towards the end of the Pleistocene. These glacier ice bodies formed a convergence zone with local alpine glaciers flowing from the ice cap centred over the Byam Martin Mountains. On the edge of a flat plateau bordering the Qarlikturvik Valley, a buried glacier ice body is associated with the basal part of a glacier whose minimum age is estimated at 0.77 Ma, but could be as old as 2.6 Ma. Due to its location on a 500-m a.s.l. plateau, the ice likely originates from a regional glacial advance and could be associated with the Baffin Glaciation, which is the oldest known glaciation on Bylot Island. In addition, this buried glacier ice represents the oldest glacier ice preserved in ice-free Arctic landscapes, and the earliest evidence of a Pleistocene glaciation in the eastern Canadian Arctic Archipelago. The persistence and delayed melting of these thick beds of buried Pleistocene glacier ice had wide-ranging effects on the landscape of Bylot Island. Our results suggest that the initiation of deeper thermokarst lakes (> 5 m) was triggered by the melting of buried glacier ice in our study area, while shallow thermokarst lakes were triggered from the melting of intrasedimental ice and ice wedges. These glacial thermokarst lakes will continue to evolve in a periglacial context through the melting of intrasedimental ice (e.g. segregation ice) and ice wedges subsequently formed in the surrounding sediments during permafrost aggradation following the glacial retreat. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies will have significant impacts on Arctic ecosystems and geosystems.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/27788 |
Date | 06 1900 |
Creators | Coulombe, Stéphanie |
Contributors | Fortier, Daniel |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0032 seconds