Return to search

Essays on Birnbaum-Saunders models

Nessa tese apresentamos três diferentes aplicações dos modelos Birnbaum-Saunders. No capítulo 2 introduzimos um novo método por função-núcleo não-paramétrico para a estimação de densidades assimétricas, baseado nas distribuições Birnbaum-Saunders generalizadas assimétricas. Funções-núcleo baseadas nessas distribuições têm a vantagem de fornecer flexibilidade nos níveis de assimetria e curtose. Em adição, os estimadores da densidade por função-núcleo Birnbaum-Saunders gene-ralizadas assimétricas são livres de viés na fronteira e alcançam a taxa ótima de convergência para o erro quadrático integrado médio dos estimadores por função-núcleo-assimétricas-não-negativos da densidade. Realizamos uma análise de dados consistindo de duas partes. Primeiro, conduzimos uma simulação de Monte Carlo para avaliar o desempenho do método proposto. Segundo, usamos esse método para estimar a densidade de três dados reais da concentração de poluentes atmosféricos. Os resultados numéricos favorecem os estimadores não-paramétricos propostos. No capítulo 3 propomos uma nova família de modelos autorregressivos de duração condicional baseados nas distribuições misturas de escala Birnbaum-Saunders (SBS). A distribuição Birnbaum-Saunders (BS) é um modelo que tem recebido considerável atenção recentemente devido às suas boas propriedades. Uma extensão dessa distribuição é a classe de distribuições SBS, a qual (i) herda várias das boas propriedades da distribuição BS, (ii) permite a estimação de máxima verossimilhança em uma forma eficiente usando o algoritmo EM, e (iii) possibilita a obtenção de um procedimento de estimação robusta, entre outras propriedades. O modelo autorregressivo de duração condicional é a família primária de modelos para analisar dados de duração de transações de alta frequência. A metodologia estudada aqui inclui estimação dos parâmetros pelo algoritmo EM, inferência para esses parâmetros, modelo preditivo e uma análise residual. Realizamos simulações de Monte Carlo para avaliar o desempenho da metodologia proposta. Ainda, avalia-mos a utilidade prática dessa metodologia usando dados reais de transações financeiras da bolsa de valores de Nova Iorque. O capítulo 4 trata de índices de capacidade do processo (PCIs), os quais são ferramentas utilizadas pelas empresas para determinar a qualidade de um produto e avaliar o desempenho de seus processos de produção. Estes índices foram desenvolvidos para processos cuja característica de qualidade tem uma distribuição normal. Na prática, muitas destas ca-racterísticas não seguem esta distribuição. Nesse caso, os PCIs devem ser modificados considerando a não-normalidade. O uso de PCIs não-modificados podemlevar a resultados inadequados. De maneira a estabelecer políticas de qualidade para resolver essa inadequação, transformação dos dados tem sido proposta, bem como o uso de quantis de distribuições não-normais. Um distribuição não-normal assimétrica o qual tem tornado muito popular em tempos recentes é a distribuição Birnbaum-Saunders (BS). Propomos, desenvolvemos, implementamos e aplicamos uma metodologia baseada em PCIs para a distribuição BS. Além disso, realizamos um estudo de simulação para avaliar o desempenho da metodologia proposta. Essa metodologia foi implementada usando o software estatístico chamado R. Aplicamos essa metodologia para um conjunto de dados reais de maneira a ilustrar a sua flexibilidade e potencialidade. / In this thesis, we present three different applications of Birnbaum-Saunders models. In Chapter 2, we introduce a new nonparametric kernel method for estimating asymmetric densities based on generalized skew-Birnbaum-Saunders distributions. Kernels based on these distributions have the advantage of providing flexibility in the asymmetry and kurtosis levels. In addition, the generalized skew-Birnbaum-Saunders kernel density estimators are boundary bias free and achieve the optimal rate of convergence for the mean integrated squared error of the nonnegative asymmetric kernel density estimators. We carry out a data analysis consisting of two parts. First, we conduct a Monte Carlo simulation study for evaluating the performance of the proposed method. Second, we use this method for estimating the density of three real air pollutant concentration data sets, whose numerical results favor the proposed nonparametric estimators. In Chapter 3, we propose a new family of autoregressive conditional duration models based on scale-mixture Birnbaum-Saunders (SBS) distributions. The Birnbaum-Saunders (BS) distribution is a model that has received considerable attention recently due to its good properties. An extension of this distribution is the class of SBS distributions, which allows (i) several of its good properties to be inherited; (ii) maximum likelihood estimation to be efficiently formulated via the EM algorithm; (iii) a robust estimation procedure to be obtained; among other properties. The autoregressive conditional duration model is the primary family of models to analyze high-frequency financial transaction data. This methodology includes parameter estimation by the EM algorithm, inference for these parameters, the predictive model and a residual analysis. We carry out a Monte Carlo simulation study to evaluate the performance of the proposed methodology. In addition, we assess the practical usefulness of this methodology by using real data of financial transactions from the New York stock exchange. Chapter 4 deals with process capability indices (PCIs), which are tools widely used by companies to determine the quality of a product and the performance of their production processes. These indices were developed for processes whose quality characteristic has a normal distribution. In practice, many of these characteristics do not follow this distribution. In such a case, the PCIs must be modified considering the non-normality. The use of unmodified PCIs can lead to inadequacy results. In order to establish quality policies to solve this inadequacy, data transformation has been proposed, as well as the use of quantiles from non-normal distributions. An asymmetric non-normal distribution which has become very popular in recent times is the Birnbaum-Saunders (BS) distribution. We propose, develop, implement and apply a methodology based on PCIs for the BS distribution. Furthermore, we carry out a simulation study to evaluate the performance of the proposed methodology. This methodology has been implemented in a noncommercial and open source statistical software called R. We apply this methodology to a real data set to illustrate its flexibility and potentiality.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/87375
Date January 2013
CreatorsSantos, Helton Saulo Bezerra dos
ContributorsZiegelmann, Flavio Augusto, Leiva, Víctor
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds