Pour assurer la navigation autonome d’un robot mobile, les traitements effectués pour sa localisation doivent être faits en ligne et doivent garantir une précision suffisante pour permettre au robot d’effectuer des tâches de haut niveau pour la navigation et l’évitement d’obstacles. Les auteurs de travaux basés sur le SLAM visuel (Simultaneous Localization And Mapping) tentent depuis quelques années de garantir le meilleur compromis rapidité/précision. La majorité des solutions SLAM visuel existantes sont basées sur une représentation éparse de l’environnement. En suivant des primitives visuelles sur plusieurs images, il est possible d’estimer la position 3D de ces primitives ainsi que les poses de la caméra. La communauté du SLAM visuel a concentré ses efforts sur l’augmentation du nombre de primitives visuelles suivies et sur l’ajustement de la carte 3D, afin d’améliorer l’estimation de la trajectoire de la caméra et les positions 3D des primitives. Cependant, la localisation par SLAM visuel présente souvent des dérives dues au cumul d’erreurs, et dans le cas du SLAM visuel monoculaire, la position de la caméra n’est connue qu’à un facteur d’échelle près. Ce dernier peut être fixé initialement mais dérive au cours du temps. Pour faire face à ces limitations, nous avons centré nos travaux de thèse sur la problématique suivante : intégrer des informations supplémentaires dans un algorithme de SLAM visuel monoculaire afin de mieux contraindre la trajectoire de la caméra et la reconstruction 3D. Ces contraintes ne doivent pas détériorer les performances calculatoires de l’algorithme initial et leur absence ne doit pas mettre l’algorithme en échec. C’est pour cela que nous avons choisi d’intégrer l’information de profondeur fournie par un capteur 3D (e.g. Microsoft Kinect) et des informations géométriques sur la structure de la scène. La première contribution de cette thèse est de modifier l’algorithme SLAM visuel monoculaire proposé par Mouragnon et al. (2006b) pour prendre en compte la mesure de profondeur fournie par un capteur 3D, en proposant particulièrement un ajustement de faisceaux qui combine, d’une manière simple, des informations visuelles et des informations de profondeur. La deuxième contribution est de proposer une nouvelle fonction de coût du même ajustement de faisceaux qui intègre, en plus des contraintes sur les profondeurs des points, des contraintes géométriques d’appartenance aux plans de la scène. Les solutions proposées ont été validées sur des séquences de synthèse et sur des séquences réelles, représentant des environnements variés. Ces solutions ont été comparées aux récentes méthodes de l’état de l’art. Les résultats obtenus montrent que les différentes contraintes développées permettent d’améliorer significativement la précision de la localisation du SLAM. De plus les solutions proposées sont faciles à déployer et peu couteuses en temps de calcul. / To guarantee autonomous and safely navigation for a mobile robot, the processing achieved for its localization must be fast and accurate enough to enable the robot to perform high-level tasks for navigation and obstacle avoidance. The authors of Simultaneous Localization And Mapping (SLAM) based works, are trying since year, to ensure the speed/accuracy trade-off. Most existing works in the field of monocular (SLAM) has largely centered around sparse feature-based representations of the environment. By tracking salient image points across many frames of video, both the positions of the features and the motion of the camera can be inferred live. Within the visual SLAM community, there has been a focus on both increasing the number of features that can be tracked across an image and efficiently managing and adjusting this map of features in order to improve camera trajectory and feature location accuracy. However, visual SLAM suffers from some limitations. Indeed, with a single camera and without any assumptions or prior knowledge about the camera environment, rotation can be retrieved, but the translation is up to scale. Furthermore, visual monocular SLAM is an incremental process prone to small drifts in both pose measurement and scale, which when integrated over time, become increasingly significant over large distances. To cope with these limitations, we have centered our work around the following issues : integrate additional information into an existing monocular visual SLAM system, in order to constrain the camera localization and the mapping points. Provided that the high speed of the initial SLAM process is kept and the lack of these added constraints should not give rise to the failure of the process. For these last reasons, we have chosen to integrate the depth information provided by a 3D sensor (e.g. Microsoft Kinect) and geometric information about scene structure. The primary contribution of this work consists of modifying the SLAM algorithm proposed by Mouragnon et al. (2006b) to take into account the depth measurement provided by a 3D sensor. This consists of several rather straightforward changes, but also on a way to combine the depth and visual data in the bundle adjustment process. The second contribution is to propose a solution that uses, in addition to the depth and visual data, the constraints lying on points belonging to the plans of the scene. The proposed solutions have been validated on a synthetic sequences as well as on a real sequences, which depict various environments. These solutions have been compared to the state of art methods. The performances obtained with the previous solutions demonstrate that the additional constraints developed, improves significantly the accuracy and the robustness of the SLAM localization. Furthermore, these solutions are easy to roll out and not much time consuming.
Identifer | oai:union.ndltd.org:theses.fr/2017CLFAC006 |
Date | 02 March 2017 |
Creators | Melbouci, Kathia |
Contributors | Clermont Auvergne, Dhome, Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds