• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • Tagged with
  • 17
  • 17
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconstruction et alignement en vision 3D : points, droites, plans et caméras

Bartoli, Adrien 10 September 2003 (has links) (PDF)
Cette thèse concerne la reconstruction de modèles 3D de scènes à partir d'images prises par des caméras. Il est courant de reconstruire à partir de sous-ensembles d'images puis de fusionner les modèles partiels ainsi obtenus par une phase d'alignement 3D. Les algorithmes de reconstruction et d'alignement s'appuient sur des correspondances de points ou de droites entre les images. La localisation de ces points ou droites dans les images est affectée par un bruit de mesure, influençant la qualité des modèles 3D reconstruits. Cette thèse est centrée sur l'obtention de résultats optimaux et sur les problèmes de représentation qui en découlent. La première partie de cette thèse aborde le problème de la reconstruction de modèles 3D. Les cas des caméras calibrées et non calibrées sont traités. Nous développons des méthodes de reconstruction de points, de droites et de caméras. L'incorporation de contraintes géométriques de coplanarité permet la reconstruction conjointe de plans. Nos contributions principales sont le développement et la comparaison de méthodes permettant la reconstruction 3D optimale de points, droites, plans et caméras. La deuxième partie de cette thèse aborde le problème de l'alignement de modèles 3D, qui consiste à estimer la transformation géométrique liant deux modèles 3D. Les méthodes existantes sont basées sur des correspondances de points. Nous étudions le cas des correspondances de droites. Les cas des caméras calibrées et non calibrées sont traités. Nos contributions majeures dans ce domaine sont, d'un point de vue théorique, une étude des transformations géométriques de droites 3D. Plus précisément, nous étendons la représentation matricielle standard, adaptée aux points, en une représentation adaptée aux droites. D'un point de vue pratique, nous développons et comparons plusieurs méthodes d'alignement linéaires et non-linéaires. Nous proposons finalement des méthodes de reconstruction de modèles 3D lorsque la scène observée n'est pas rigide. Par ailleurs, nous développons un méthode de détection automatique de surfaces planes dans une modèle 3D.
2

Recherche linéaire et fusion de données par ajustement de faisceaux : application à la localisation par vision

Michot, Julien 09 December 2010 (has links) (PDF)
Les travaux présentés dans ce manuscrit concernent le domaine de la localisation et la reconstruction 3D par vision artificielle. Dans ce contexte, la trajectoire d'une caméra et la structure3D de la scène filmée sont initialement estimées par des algorithmes linéaires puis optimisées par un algorithme non-linéaire, l'ajustement de faisceaux. Cette thèse présente tout d'abord une technique de recherche de l'amplitude de déplacement (recherche linéaire), ou line search pour les algorithmes de minimisation itérative. La technique proposée est non itérative et peut être rapidement implantée dans un ajustement de faisceaux traditionnel. Cette technique appelée recherche linéaire algébrique globale (G-ALS), ainsi que sa variante à deux dimensions (Two way-ALS), accélèrent la convergence de l'algorithme d'ajustement de faisceaux. L'approximation de l'erreur de reprojection par une distance algébrique rend possible le calcul analytique d'une amplitude de déplacement efficace (ou de deux pour la variante Two way-ALS), par la résolution d'un polynôme de degré 3 (G-ALS) ou 5 (Two way-ALS). Nos expérimentations sur des données simulées et réelles montrent que cette amplitude, optimale en distance algébrique, est performante en distance euclidienne, et permet de réduire le temps de convergence des minimisations. Une difficulté des algorithmes de localisation en temps réel par la vision (SLAM monoculaire) est que la trajectoire estimée est souvent affectée par des dérives : dérives d'orientation, de position et d'échelle. Puisque ces algorithmes sont incrémentaux, les erreurs et approximations sont cumulées tout au long de la trajectoire, et une dérive se forme sur la localisation globale. De plus, un système de localisation par vision peut toujours être ébloui ou utilisé dans des conditions qui ne permettent plus temporairement de calculer la localisation du système. Pour résoudre ces problèmes, nous proposons d'utiliser un capteur supplémentaire mesurant les déplacements de la caméra. Le type de capteur utilisé varie suivant l'application ciblée (un odomètre pour la localisation d'un véhicule, une centrale inertielle légère ou un système de navigation à guidage inertiel pour localiser une personne). Notre approche consiste à intégrer ces informations complémentaires directement dans l'ajustement de faisceaux, en ajoutant un terme de contrainte pondéré dans la fonction de coût. Nous évaluons trois méthodes permettant de sélectionner dynamiquement le coefficient de pondération et montrons que ces méthodes peuvent être employées dans un SLAM multi-capteur temps réel, avec différents types de contrainte, sur l'orientation ou sur la norme du déplacement de la caméra. La méthode est applicable pour tout autre terme de moindres carrés. Les expérimentations menées sur des séquences vidéo réelles montrent que cette technique d'ajustement de faisceaux contraint réduit les dérives observées avec les algorithmes de vision classiques. Ils améliorent ainsi la précision de la localisation globale du système.
3

Etalonnage de caméras à champs disjoints et reconstruction 3D : Application à un robot mobile

Lébraly, Pierre 18 January 2012 (has links) (PDF)
Ces travaux s'inscrivent dans le cadre du projet VIPA " Véhicule Individuel Public Autonome ", au cours duquel le LASMEA et ses partenaires ont mis au point des véhicules capables de naviguer automatiquement, sans aucune infrastructure extérieure dédiée, dans des zones urbaines (parkings, zones piétonnes, aéroports). Il est doté de deux caméras, l'une à l'avant, et l'autre à l'arrière. Avant son déploiement, le véhicule doit tout d'abord être étalonné et conduit manuellement afin de reconstruire la carte d'amers visuels dans laquelle il naviguera ensuite automatiquement. Les travaux de cette thèse ont pour but de développer et de mettre en oeuvre des méthodes souples permettant d'étalonner cet ensemble de caméras dont les champs de vue sont totalement disjoints. Après une étape préalable d'étalonnage intrinsèque et un état de l'art sur les systèmes multi-caméra, nous développons et mettons en oeuvre différentes méthodes d'étalonnage extrinsèque (déterminant les poses relatives des caméras à champs de vue disjoints). La première méthode présentée utilise un miroir plan pour créer un champ de vision commun aux différentes caméras. La seconde approche consiste à manoeuvrer le véhicule pendant que chaque caméra observe une scène statique composée de cibles (dont la détection est sous-pixellique). Dans la troisième approche, nous montrons que l'étalonnage extrinsèque peut être obtenu simultanément à la reconstruction 3D (par exemple lors de la phase d'apprentissage), en utilisant des points d'intérêt comme amers visuels. Pour cela un algorithme d'ajustement de faisceaux multi-caméra a été développé avec une implémentation creuse. Enfin, nous terminons par un étalonnage déterminant l'orientation du système multi-caméra par rapport au véhicule.
4

Localisation et cartographie simultanées par ajustement de faisceaux local : propagation d'erreurs et réduction de la dérive à l'aide d'un odomètre

Eudes, Alexandre 14 March 2011 (has links) (PDF)
Les travaux présentés ici concernent le domaine de la localisation de véhicule par vision artificielle. Dans ce contexte, la trajectoire d'une caméra et la structure3D de la scène filmée sont estimées par une méthode d'odométrie visuelle monoculaire basée sur l'ajustement de faisceaux local. Les contributions de cette thèse sont plusieurs améliorations de cette méthode. L'incertitude associée à la position estimée n'est pas fournie par la méthode d'ajustement de faisceaux local. C'est pourtant une information indispensable pour pouvoir utiliser cette position, notamment dans un système de fusion multi-sensoriel. Une étude de la propagation d'incertitude pour cette méthode d'odométrie visuelle a donc été effectuée pour obtenir un calcul d'incertitude temps réel et représentant l'erreur de manière absolue (dans le repère du début de la trajectoire). Sur de longues séquences (plusieurs kilomètres), les méthodes monoculaires de localisation sont connues pour présenter des dérives importantes dues principalement à la dérive du facteur d'échelle (non observable). Pour réduire cette dérive et améliorer la qualité de la position fournie, deux méthodes de fusion ont été développées. Ces deux améliorations permettent de rendre cette méthode monoculaire exploitable dans le cadre automobile sur de grandes distances tout en conservant les critères de temps réel nécessaire dans ce type d'application. De plus, notre approche montre l'intérêt de disposer des incertitudes et ainsi de tirer parti de l'information fournie par d'autres capteurs.
5

Auto-calibration d'une multi-caméra omnidirectionnelle grand public fixée sur un casque / Self-calibration for consumer omnidirectional multi-camera mounted on a helmet

Nguyen, Thanh-Tin 19 December 2017 (has links)
Les caméras sphériques et 360 deviennent populaires et sont utilisées notamment pour la création de vidéos immersives et la génération de contenu pour la réalité virtuelle. Elles sont souvent composées de plusieurs caméras grand-angles/fisheyes pointant dans différentes directions et rigidement liées les unes aux autres. Cependant, il n'est pas si simple de les calibrer complètement car ces caméras grand public sont rolling shutter et peuvent être mal synchronisées. Cette thèse propose des méthodes permettant de calibrer ces multi-caméras à partir de vidéos sans utiliser de mire de calibration. On initialise d'abord un modèle de multi-caméra grâce à des hypothèses appropriées à un capteur omnidirectionnel sans direction privilégiée : les caméras ont les mêmes réglages (dont la fréquence et l'angle de champs de vue) et sont approximativement équiangulaires. Deuxièmement, sachant que le module de la vitesse angulaire est le même pour deux caméras au même instant, nous proposons de synchroniser les caméras à une image près à partir des vitesses angulaires estimées par structure-from-motion monoculaire. Troisièmement, les poses inter-caméras et les paramètres intrinsèques sont estimés par structure-from-motion et ajustement de faisceaux multi-caméras avec les approximations suivantes : la multi-caméra est centrale, global shutter ; et la synchronisation précédant est imposée.Enfin, nous proposons un ajustement de faisceaux final sans ces approximations, qui raffine notamment la synchronisation (à précision sous-trame), le coefficient de rolling shutter et les autres paramètres (intrinsèques, extrinsèques, 3D). On expérimente dans un contexte que nous pensons utile pour des applications comme les vidéos 360 et la modélisation 3D de scènes : plusieurs caméras grand public ou une caméra sphérique fixée(s) sur un casque et se déplaçant le long d'une trajectoire de quelques centaines de mètres à quelques kilomètres. / 360 degree and spherical multi-cameras built by fixing together several consumer cameras become popular and are convenient for recent applications like immersive videos, 3D modeling and virtual reality. This type of cameras allows to include the whole scene in a single view.When the goal of our applications is to merge monocular videos together into one cylinder video or to obtain 3D informations from environment,there are several basic steps that should be performed beforehand.Among these tasks, we consider the synchronization between cameras; the calibration of multi-camera system including intrinsic and extrinsic parameters (i.e. the relative poses between cameras); and the rolling shutter calibration. The goal of this thesis is to develop and apply user friendly method. Our approach does not require a calibration pattern. First, the multi-camera is initialized thanks to assumptions that are suitable to an omnidirectional camera without a privileged direction:the cameras have the same setting (frequency, image resolution, field-of-view) and are roughly equiangular.Second, a frame-accurate synchronization is estimated from instantaneous angular velocities of each camera provided by monocular Structure-from-Motion.Third, both inter-camera poses and intrinsic parameters are refined using multi-camera Structure-from-Motion and bundle adjustment.Last, we introduce a bundle adjustment that estimates not only the usual parameters but also a subframe-accurate synchronization and the rolling shutter. We experiment in a context that we believe useful for applications (3D modeling and 360 videos):several consumer cameras or a spherical camera mounted on a helmet and moving along trajectories of several hundreds of meters or kilometers.
6

L'ajustement de faisceaux contraint comme cadre d'unification des méthodes de localisation : application à la réalité augmentée sur des objets 3D

Tamaazousti, Mohamed 13 March 2013 (has links) (PDF)
Les travaux réalisés au cours de cette thèse s'inscrivent dans la problématique de localisation en temps réel d'une caméra par vision monoculaire. Dans la littérature, il existe différentes méthodes qui peuvent être classées en trois catégories. La première catégorie de méthodes considère une caméra évoluant dans un environnement complètement inconnu (SLAM). Cette méthode réalise une reconstruction enligne de primitives observées dans des images d'une séquence vidéo et utilise cette reconstruction pour localiser la caméra. Les deux autres permettent une localisation par rapport à un objet 3D de la scène en s'appuyant sur la connaissance, a priori, d'un modèle de cet objet (suivi basé modèle). L'une utilise uniquement l'information du modèle 3D de l'objet pour localiser la caméra, l'autre peut être considérée comme l'intermédiaire entre le SLAM et le suivi basé modèle. Cette dernière méthode consiste à localiser une caméra par rapport à un objet en utilisant, d'une part, le modèle de ce dernier et d'autre part, une reconstruction en ligne des primitives de l'objet d'intérêt. Cette reconstruction peut être assimilée à une mise à jour du modèle initial (suivi basé modèle avec mise à jour). Chacune de ces méthodes possède des avantages et des inconvénients. Dans le cadre de ces travaux de thèse, nous proposons une solution unifiant l'ensemble de ces méthodes de localisation dans un unique cadre désigné sous le terme de SLAM contraint. Cette solution, qui unifie ces différentes méthodes, permet de tirer profit de leurs avantages tout en limitant leurs inconvénients respectifs. En particulier, nous considérons que la caméra évolue dans un environnement partiellement connu, c'est-à-dire pour lequel un modèle (géométrique ou photométrique) 3D d'un objet statique de la scène est disponible. L'objectif est alors d'estimer de manière précise la pose de la caméra par rapport à cet objet 3D. L'information absolue issue du modèle 3D de l'objet d'intérêt est utilisée pour améliorer la localisation de type SLAM en incluant cette information additionnelle directement dans le processus d'ajustement de faisceaux. Afin de pouvoir gérer un large panel d'objets 3D et de scènes, plusieurs types de contraintes sont proposées dans ce mémoire. Ces différentes contraintes sont regroupées en deux approches. La première permet d'unifier les méthodes SLAM et de suivi basé modèle, en contraignant le déplacement de la caméra via la projection de primitives existantes extraites du modèle 3D dans les images. La seconde unifie les méthodes SLAM et de suivi basé modèle avec mise à jour en contraignant les primitives reconstruites par le SLAM à appartenir à la surface du modèle (unification SLAM et mise à jour du modèle). Les avantages de ces différents ajustements de faisceaux contraints, en terme de précision, de stabilité de recalage et de robustesse aux occultations, sont démontrés sur un grand nombre de données de synthèse et de données réelles. Des applications temps réel de réalité augmentée sont également présentées sur différents types d'objets 3D. Ces travaux ont fait l'objet de 4 publications internationales, de 2 publications nationales et d'un dépôt de brevet.
7

Recherche linéaire et fusion de données par ajustement de faisceaux : application à la localisation par vision / Linear research and data fusion by beam adjustment : application to vision localization

Michot, Julien 09 December 2010 (has links)
Les travaux présentés dans ce manuscrit concernent le domaine de la localisation et la reconstruction 3D par vision artificielle. Dans ce contexte, la trajectoire d’une caméra et la structure3D de la scène filmée sont initialement estimées par des algorithmes linéaires puis optimisées par un algorithme non-linéaire, l’ajustement de faisceaux. Cette thèse présente tout d’abord une technique de recherche de l’amplitude de déplacement (recherche linéaire), ou line search pour les algorithmes de minimisation itérative. La technique proposée est non itérative et peut être rapidement implantée dans un ajustement de faisceaux traditionnel. Cette technique appelée recherche linéaire algébrique globale (G-ALS), ainsi que sa variante à deux dimensions (Two way-ALS), accélèrent la convergence de l’algorithme d’ajustement de faisceaux. L’approximation de l’erreur de reprojection par une distance algébrique rend possible le calcul analytique d’une amplitude de déplacement efficace (ou de deux pour la variante Two way-ALS), par la résolution d’un polynôme de degré 3 (G-ALS) ou 5 (Two way-ALS). Nos expérimentations sur des données simulées et réelles montrent que cette amplitude, optimale en distance algébrique, est performante en distance euclidienne, et permet de réduire le temps de convergence des minimisations. Une difficulté des algorithmes de localisation en temps réel par la vision (SLAM monoculaire) est que la trajectoire estimée est souvent affectée par des dérives : dérives d’orientation, de position et d’échelle. Puisque ces algorithmes sont incrémentaux, les erreurs et approximations sont cumulées tout au long de la trajectoire, et une dérive se forme sur la localisation globale. De plus, un système de localisation par vision peut toujours être ébloui ou utilisé dans des conditions qui ne permettent plus temporairement de calculer la localisation du système. Pour résoudre ces problèmes, nous proposons d’utiliser un capteur supplémentaire mesurant les déplacements de la caméra. Le type de capteur utilisé varie suivant l’application ciblée (un odomètre pour la localisation d’un véhicule, une centrale inertielle légère ou un système de navigation à guidage inertiel pour localiser une personne). Notre approche consiste à intégrer ces informations complémentaires directement dans l’ajustement de faisceaux, en ajoutant un terme de contrainte pondéré dans la fonction de coût. Nous évaluons trois méthodes permettant de sélectionner dynamiquement le coefficient de pondération et montrons que ces méthodes peuvent être employées dans un SLAM multi-capteur temps réel, avec différents types de contrainte, sur l’orientation ou sur la norme du déplacement de la caméra. La méthode est applicable pour tout autre terme de moindres carrés. Les expérimentations menées sur des séquences vidéo réelles montrent que cette technique d’ajustement de faisceaux contraint réduit les dérives observées avec les algorithmes de vision classiques. Ils améliorent ainsi la précision de la localisation globale du système. / The works presented in this manuscript are in the field of computer vision, and tackle the problem of real-time vision based localization and 3D reconstruction. In this context, the trajectory of a camera and the 3D structure of the filmed scene are initially estimated by linear algorithms and then optimized by a nonlinear algorithm, bundle adjustment. The thesis first presents a new technique of line search, dedicated to the nonlinear minimization algorithms used in Structure-from-Motion. The proposed technique is not iterative and can be quickly installed in traditional bundle adjustment frameworks. This technique, called Global Algebraic Line Search (G-ALS), and its two-dimensional variant (Two way-ALS), accelerate the convergence of the bundle adjustment algorithm. The approximation of the reprojection error by an algebraic distance enables the analytical calculation of an effective displacement amplitude (or two amplitudes for the Two way-ALS variant) by solving a degree 3 (G-ALS) or 5 (Two way-ALS) polynomial. Our experiments, conducted on simulated and real data, show that this amplitude, which is optimal for the algebraic distance, is also efficient for the Euclidean distance and reduces the convergence time of minimizations. One difficulty of real-time tracking algorithms (monocular SLAM) is that the estimated trajectory is often affected by drifts : on the absolute orientation, position and scale. Since these algorithms are incremental, errors and approximations are accumulated throughout the trajectory and cause global drifts. In addition, a tracking vision system can always be dazzled or used under conditions which prevented temporarily to calculate the location of the system. To solve these problems, we propose to use an additional sensor measuring the displacement of the camera. The type of sensor used will vary depending on the targeted application (an odometer for a vehicle, a lightweight inertial navigation system for a person). We propose to integrate this additional information directly into an extended bundle adjustment, by adding a constraint term in the weighted cost function. We evaluate three methods (based on machine learning or regularization) that dynamically select the weight associated to the constraint and show that these methods can be used in a real time multi-sensor SLAM, and validate them with different types of constraint on the orientation or on the scale. Experiments conducted on real video sequences show that this technique of constrained bundle adjustment reduces the drifts observed with the classical vision algorithms and improves the global accuracy of the positioning system.
8

Reconstruction 3D de l'environnement dynamique d'un véhicule à l'aide d'un système multi-caméras hétérogène en stéréo wide-baseline / 3D reconstruction of the dynamic environment surrounding a vehicle using a heterogeneous multi-camera system in wide-baseline stereo

Mennillo, Laurent 05 June 2019 (has links)
Cette thèse a été réalisée dans le secteur de l'industrie automobile, en collaboration avec le Groupe Renault et concerne en particulier le développement de systèmes d'aide à la conduite avancés et de véhicules autonomes. Les progrès réalisés par la communauté scientifique durant les dernières décennies, dans les domaines de l'informatique et de la robotique notamment, ont été si importants qu'ils permettent aujourd'hui la mise en application de systèmes complexes au sein des véhicules. Ces systèmes visent dans un premier temps à réduire les risques inhérents à la conduite en assistant les conducteurs, puis dans un second temps à offrir des moyens de transport entièrement autonomes. Les méthodes de SLAM multi-objets actuellement intégrées au sein de ces véhicules reposent pour majeure partie sur l'utilisation de capteurs embarqués très performants tels que des télémètres laser, au coût relativement élevé. Les caméras numériques en revanche, de par leur coût largement inférieur, commencent à se démocratiser sur certains véhicules de grande série et assurent généralement des fonctions d'assistance à la conduite, pour l'aide au parking ou le freinage d'urgence, par exemple. En outre, cette implantation plus courante permet également d'envisager leur utilisation afin de reconstruire l'environnement dynamique proche des véhicules en trois dimensions. D'un point de vue scientifique, les techniques de SLAM visuel multi-objets existantes peuvent être regroupées en deux catégories de méthodes. La première catégorie et plus ancienne historiquement concerne les méthodes stéréo, faisant usage de plusieurs caméras à champs recouvrants afin de reconstruire la scène dynamique observée. La plupart reposent en général sur l'utilisation de paires stéréo identiques et placées à faible distance l'une de l'autre, ce qui permet un appariement dense des points d'intérêt dans les images et l'estimation de cartes de disparités utilisées lors de la segmentation du mouvement des points reconstruits. L'autre catégorie de méthodes, dites monoculaires, ne font usage que d'une unique caméra lors du processus de reconstruction. Cela implique la compensation du mouvement propre du système d'acquisition lors de l'estimation du mouvement des autres objets mobiles de la scène de manière indépendante. Plus difficiles, ces méthodes posent plusieurs problèmes, notamment le partitionnement de l'espace de départ en plusieurs sous-espaces représentant les mouvements individuels de chaque objet mobile, mais aussi le problème d'estimation de l'échelle relative de reconstruction de ces objets lors de leur agrégation au sein de la scène statique. La problématique industrielle de cette thèse, consistant en la réutilisation des systèmes multi-caméras déjà implantés au sein des véhicules, majoritairement composés d'un caméra frontale et de caméras surround équipées d'objectifs très grand angle, a donné lieu au développement d'une méthode de reconstruction multi-objets adaptée aux systèmes multi-caméras hétérogènes en stéréo wide-baseline. Cette méthode est incrémentale et permet la reconstruction de points mobiles éparses, grâce notamment à plusieurs contraintes géométriques de segmentation des points reconstruits ainsi que de leur trajectoire. Enfin, une évaluation quantitative et qualitative des performances de la méthode a été menée sur deux jeux de données distincts, dont un a été développé durant ces travaux afin de présenter des caractéristiques similaires aux systèmes hétérogènes existants. / This Ph.D. thesis, which has been carried out in the automotive industry in association with Renault Group, mainly focuses on the development of advanced driver-assistance systems and autonomous vehicles. The progress made by the scientific community during the last decades in the fields of computer science and robotics has been so important that it now enables the implementation of complex embedded systems in vehicles. These systems, primarily designed to provide assistance in simple driving scenarios and emergencies, now aim to offer fully autonomous transport. Multibody SLAM methods currently used in autonomous vehicles often rely on high-performance and expensive onboard sensors such as LIDAR systems. On the other hand, digital video cameras are much cheaper, which has led to their increased use in newer vehicles to provide driving assistance functions, such as parking assistance or emergency braking. Furthermore, this relatively common implementation now allows to consider their use in order to reconstruct the dynamic environment surrounding a vehicle in three dimensions. From a scientific point of view, existing multibody visual SLAM techniques can be divided into two categories of methods. The first and oldest category concerns stereo methods, which use several cameras with overlapping fields of view in order to reconstruct the observed dynamic scene. Most of these methods use identical stereo pairs in short baseline, which allows for the dense matching of feature points to estimate disparity maps that are then used to compute the motions of the scene. The other category concerns monocular methods, which only use one camera during the reconstruction process, meaning that they have to compensate for the ego-motion of the acquisition system in order to estimate the motion of other objects. These methods are more difficult in that they have to address several additional problems, such as motion segmentation, which consists in clustering the initial data into separate subspaces representing the individual movement of each object, but also the problem of the relative scale estimation of these objects before their aggregation within the static scene. The industrial motive for this work lies in the use of existing multi-camera systems already present in actual vehicles to perform dynamic scene reconstruction. These systems, being mostly composed of a front camera accompanied by several surround fisheye cameras in wide-baseline stereo, has led to the development of a multibody reconstruction method dedicated to such heterogeneous systems. The proposed method is incremental and allows for the reconstruction of sparse mobile points as well as their trajectory using several geometric constraints. Finally, a quantitative and qualitative evaluation conducted on two separate datasets, one of which was developed during this thesis in order to present characteristics similar to existing multi-camera systems, is provided.
9

3D Vision Geometry for Rolling Shutter Cameras / Géométrie pour la vision 3D avec des caméras Rolling Shutter

Lao, Yizhen 16 May 2019 (has links)
De nombreuses caméras CMOS modernes sont équipées de capteurs Rolling Shutter (RS). Ces caméras à bas coût et basse consommation permettent d’atteindre de très hautes fréquences d’acquisition. Dans ce mode d’acquisition, les lignes de pixels sont exposées séquentiellement du haut vers le bas de l'image. Par conséquent, les images capturées alors que la caméra et/ou la scène est en mouvement présentent des distorsions qui rendent les algorithmes classiques au mieux moins précis, au pire inutilisables en raison de singularités ou de configurations dégénérées. Le but de cette thèse est de revisiter la géométrie de la vision 3D avec des caméras RS en proposant des solutions pour chaque sous-tâche du pipe-line de Structure-from-Motion (SfM).Le chapitre II présente une nouvelle méthode de correction du RS en utilisant les droites. Contrairement aux méthodes existantes, qui sont itératives et font l’hypothèse dite Manhattan World (MW), notre solution est linéaire et n’impose aucune contrainte sur l’orientation des droites 3D. De plus, la méthode est intégrée dans un processus de type RANSAC permettant de distinguer les courbes qui sont des projections de segments droits de celles qui correspondent à de vraies courbes 3D. La méthode de correction est ainsi plus robuste et entièrement automatisée.Le chapitre III revient sur l'ajustement faisceaux ou bundle adjustment (BA). Nous proposons un nouvel algorithme basé sur une erreur de projection dans laquelle l’index de ligne des points projetés varie pendant l’optimisation afin de garder une cohérence géométrique contrairement aux méthodes existantes qui considère un index fixe (celui mesurés dans l’image). Nous montrons que cela permet de lever la dégénérescence dans le cas où les directions de scan des images sont trop proches (cas très communs avec des caméras embraquées sur un véhicule par exemple). Dans le chapitre VI nous étendons le concept d'homographie aux cas d’images RS en démontrant que la relation point-à-point entre deux images d’un nuage de points coplanaires pouvait s’exprimer sous la forme de 3 à 7 matrices de taille 3X3 en fonction du modèle de mouvement utilisé. Nous proposons une méthode linéaire pour le calcul de ces matrices. Ces dernières sont ensuite utilisées pour résoudre deux problèmes classiques en vision par ordinateur à savoir le calcul du mouvement relatif et le « mosaïcing » dans le cas RS.Dans le chapitre V nous traitons le problème de calcul de pose et de reconstruction multi-vues en établissant une analogie avec les méthodes utilisées pour les surfaces déformables telles que SfT (Structure-from-Template) et NRSfM (Non Rigid Structure-from-Motion). Nous montrons qu’une image RS d’une scène rigide en mouvement peut être interprétée comme une image Global Shutter (GS) d’une surface virtuellement déformée (par l’effet RS). La solution proposée pour estimer la pose et la structure 3D de la scène est ainsi composée de deux étapes. D’abord les déformations virtuelles sont d’abord calculées grâce à SfT ou NRSfM en assumant un modèle GS classique (relaxation du modèle RS). Ensuite, ces déformations sont réinterprétées comme étant le résultat du mouvement durant l’acquisition (réintroduction du modèle RS). L’approche proposée présente ainsi de meilleures propriétés de convergence que les approches existantes. / Many modern CMOS cameras are equipped with Rolling Shutter (RS) sensors which are considered as low cost, low consumption and fast cameras. In this acquisition mode, the pixel rows are exposed sequentially from the top to the bottom of the image. Therefore, images captured by moving RS cameras produce distortions (e.g. wobble and skew) which make the classic algorithms at best less precise, at worst unusable due to singularities or degeneracies. The goal of this thesis is to propose a general framework for modelling and solving structure from motion (SfM) with RS cameras. Our approach consists in addressing each sub-task of the SfM pipe-line (namely image correction, absolute and relative pose estimation and bundle adjustment) and proposing improvements.The first part of this manuscript presents a novel RS correction method which uses line features. Unlike existing methods, which uses iterative solutions and make Manhattan World (MW) assumption, our method R4C computes linearly the camera instantaneous-motion using few image features. Besides, the method was integrated into a RANSAC-like framework which enables us to detect curves that correspond to actual 3D straight lines and reject outlier curves making image correction more robust and fully automated.The second part revisits Bundle Adjustment (BA) for RS images. It deals with a limitation of existing RS bundle adjustment methods in case of close read-out directions among RS views which is a common configuration in many real-life applications. In contrast, we propose a novel camera-based RS projection algorithm and incorporate it into RSBA to calculate reprojection errors. We found out that this new algorithm makes SfM survive the degenerate configuration mentioned above.The third part proposes a new RS Homography matrix based on point correspondences from an RS pair. Linear solvers for the computation of this matrix are also presented. Specifically, a practical solver with 13 point correspondences is proposed. In addition, we present two essential applications in computer vision that use RS homography: plane-based RS relative pose estimation and RS image stitching. The last part of this thesis studies absolute camera pose problem (PnP) and SfM which handle RS effects by drawing analogies with non-rigid vision, namely Shape-from-Template (SfT) and Non-rigid SfM (NRSfM) respectively. Unlike all existing methods which perform 3D-2D registration after augmenting the Global Shutter (GS) projection model with the velocity parameters under various kinematic models, we propose to use local differential constraints. The proposed methods outperform stat-of-the-art and handles configurations that are critical for existing methods.
10

Modélisation interactive sous contraintes à partir d'images non-calibrées : Application à la reconstruction tridimensionnelle de bâtiments

Cornou, Sébastien 02 February 2004 (has links) (PDF)
Dans le cadre de cette thèse, nous avons étudié la modélisation d'objets structurés au moyen d'images non-calibrées. Un objet structuré est un objet présentant des particularités qui permettent de le d´ecrire facilement à partir d'éléments géométriques ou physiques (une boite, un cylindre, la tour Eiffel,...). A l'opposé, un objet non structuré est, a priori, difficile à définir à partir de quelques règles simples (le ciel, la mer,...). Notre objectif était de proposer une solution permettant à un utilisateur de modéliser un objet en utilisant à la fois ses connaissances sur la scène observée et des informations extraites d'une séquence d'images obtenues au moyen d'un appareil photographique. Afin de garantir la souplesse d'utilisation et de permettre l'usage d'images dont les caractéristiques de prise de vue sont totalement inconnues (images récupérées sur internet, archives,...), nous souhaitions inscrire notre approche dans le cadre de la reconstruction non-calibrée. Le r´esultat de nos travaux est une méthode interactive complète de modélisation à partir d'images non-calibrées. La méthode développée dans cette thèse permet à l'utilisateur de modéliser tout d'abord l'objet au moyen de contraintes, puis de retrouver son modèle tridimensionnel à partir de la localisation des sommets 3D dans les différentes images disponibles. Pour parvenir à ce résultat, le système effectue un ajustement de faisceaux qui estime les dimensions de la sc`ene observée sans requérir l'initialisation de la pose des images.

Page generated in 0.0835 seconds