• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localisation et cartographie simultanées par ajustement de faisceaux local : propagation d'erreurs et réduction de la dérive à l'aide d'un odomètre

Eudes, Alexandre 14 March 2011 (has links) (PDF)
Les travaux présentés ici concernent le domaine de la localisation de véhicule par vision artificielle. Dans ce contexte, la trajectoire d'une caméra et la structure3D de la scène filmée sont estimées par une méthode d'odométrie visuelle monoculaire basée sur l'ajustement de faisceaux local. Les contributions de cette thèse sont plusieurs améliorations de cette méthode. L'incertitude associée à la position estimée n'est pas fournie par la méthode d'ajustement de faisceaux local. C'est pourtant une information indispensable pour pouvoir utiliser cette position, notamment dans un système de fusion multi-sensoriel. Une étude de la propagation d'incertitude pour cette méthode d'odométrie visuelle a donc été effectuée pour obtenir un calcul d'incertitude temps réel et représentant l'erreur de manière absolue (dans le repère du début de la trajectoire). Sur de longues séquences (plusieurs kilomètres), les méthodes monoculaires de localisation sont connues pour présenter des dérives importantes dues principalement à la dérive du facteur d'échelle (non observable). Pour réduire cette dérive et améliorer la qualité de la position fournie, deux méthodes de fusion ont été développées. Ces deux améliorations permettent de rendre cette méthode monoculaire exploitable dans le cadre automobile sur de grandes distances tout en conservant les critères de temps réel nécessaire dans ce type d'application. De plus, notre approche montre l'intérêt de disposer des incertitudes et ainsi de tirer parti de l'information fournie par d'autres capteurs.
2

Approche bayésienne de l'évaluation de l'incertitude de mesure : application aux comparaisons interlaboratoires

Demeyer, Séverine 04 March 2011 (has links) (PDF)
La modélisation par équations structurelles est très répandue dans des domaines très variés et nous l'appliquons pour la première fois en métrologie dans le traitement de données de comparaisons interlaboratoires. Les modèles à équations structurelles à variables latentes sont des modèles multivariés utilisés pour modéliser des relations de causalité entre des variables observées (les données). Le modèle s'applique dans le cas où les données peuvent être regroupées dans des blocs disjoints où chaque bloc définit un concept modélisé par une variable latente. La structure de corrélation des variables observées est ainsi résumée dans la structure de corrélation des variables latentes. Nous proposons une approche bayésienne des modèles à équations structurelles centrée sur l'analyse de la matrice de corrélation des variables latentes. Nous appliquons une expansion paramétrique à la matrice de corrélation des variables latentes afin de surmonter l'indétermination de l'échelle des variables latentes et d'améliorer la convergence de l'algorithme de Gibbs utilisé. La puissance de l'approche structurelle nous permet de proposer une modélisation riche et flexible des biais de mesure qui vient enrichir le calcul de la valeur de consensus et de son incertitude associée dans un cadre entièrement bayésien. Sous certaines hypothèses l'approche permet de manière innovante de calculer les contributions des variables de biais au biais des laboratoires. Plus généralement nous proposons un cadre bayésien pour l'amélioration de la qualité des mesures. Nous illustrons et montrons l'intérêt d'une modélisation structurelle des biais de mesure sur des comparaisons interlaboratoires en environnement.
3

Localisation et cartographie simultanées par ajustement de faisceaux local : propagation d'erreurs et réduction de la dérive à l'aide d'un odomètre / Simultaneous localization and mapping by local beam adjustment : error propagation and drift reduction using an odometer

Eudes, Alexandre 14 March 2011 (has links)
Les travaux présentés ici concernent le domaine de la localisation de véhicule par vision artificielle. Dans ce contexte, la trajectoire d’une caméra et la structure3D de la scène filmée sont estimées par une méthode d’odométrie visuelle monoculaire basée sur l’ajustement de faisceaux local. Les contributions de cette thèse sont plusieurs améliorations de cette méthode. L’incertitude associée à la position estimée n’est pas fournie par la méthode d’ajustement de faisceaux local. C’est pourtant une information indispensable pour pouvoir utiliser cette position, notamment dans un système de fusion multi-sensoriel. Une étude de la propagation d’incertitude pour cette méthode d’odométrie visuelle a donc été effectuée pour obtenir un calcul d’incertitude temps réel et représentant l’erreur de manière absolue (dans le repère du début de la trajectoire). Sur de longues séquences (plusieurs kilomètres), les méthodes monoculaires de localisation sont connues pour présenter des dérives importantes dues principalement à la dérive du facteur d’échelle (non observable). Pour réduire cette dérive et améliorer la qualité de la position fournie, deux méthodes de fusion ont été développées. Ces deux améliorations permettent de rendre cette méthode monoculaire exploitable dans le cadre automobile sur de grandes distances tout en conservant les critères de temps réel nécessaire dans ce type d’application. De plus, notre approche montre l’intérêt de disposer des incertitudes et ainsi de tirer parti de l’information fournie par d’autres capteurs. / The present work is about localisation of vehicle using computer vision methods. In this context, the camera trajectory and the 3D structure of the scene is estimated by a monocular visual odometry method based on local bundle adjustment. This thesis contributions are some improvements of this method. The uncertainty of the estimated position was not provided by the local bundle adjustment method. Indeed, this uncertainty is crucial in a multi-sensorial fusion system to use optimally the estimated position. A study of the uncertainty propagation in this visual odometry method has been done and an uncertainty calculus method has been designed to comply with real time performance. By the way, monocular visual localisation methods are known to have serious drift issues on long trajectories (some kilometers). This error mainly comes from bad propagation of the scale factor. To limit this drift and improve the quality of the given position, we proposed two data fusion methods between an odometer and the visual method. Finally, the two improvements presented here allow us to use visual localisation method in real urban environment on long trajectories under real time constraints.
4

Approche bayésienne de l'évaluation de l'incertitude de mesure : application aux comparaisons interlaboratoires

Demeyer, Séverine 04 March 2011 (has links)
La modélisation par équations structurelles est très répandue dans des domaines très variés et nous l'appliquons pour la première fois en métrologie dans le traitement de données de comparaisons interlaboratoires. Les modèles à équations structurelles à variables latentes sont des modèles multivariés utilisés pour modéliser des relations de causalité entre des variables observées (les données). Le modèle s'applique dans le cas où les données peuvent être regroupées dans des blocs disjoints où chaque bloc définit un concept modélisé par une variable latente. La structure de corrélation des variables observées est ainsi résumée dans la structure de corrélation des variables latentes. Nous proposons une approche bayésienne des modèles à équations structurelles centrée sur l'analyse de la matrice de corrélation des variables latentes. Nous appliquons une expansion paramétrique à la matrice de corrélation des variables latentes afin de surmonter l'indétermination de l'échelle des variables latentes et d'améliorer la convergence de l'algorithme de Gibbs utilisé. La puissance de l'approche structurelle nous permet de proposer une modélisation riche et flexible des biais de mesure qui vient enrichir le calcul de la valeur de consensus et de son incertitude associée dans un cadre entièrement bayésien. Sous certaines hypothèses l'approche permet de manière innovante de calculer les contributions des variables de biais au biais des laboratoires. Plus généralement nous proposons un cadre bayésien pour l'amélioration de la qualité des mesures. Nous illustrons et montrons l'intérêt d'une modélisation structurelle des biais de mesure sur des comparaisons interlaboratoires en environnement. / Structural equation modelling is a widespread approach in a variety of domains and is first applied here to interlaboratory comparisons in metrology. Structural Equation Models with latent variables (SEM) are multivariate models used to model causality relationships in observed variables (the data). It is assumed that data can be grouped into separate blocks each describing a latent concept modelled by a latent variable. The correlation structure of the observed variables is transferred into the correlation structure of the latent variables. A Bayesian approach of SEM is proposed based on the analysis of the correlation matrix of latent variables using parameter expansion to overcome identifiability issues and improving the convergence of the Gibbs sampler. SEM is used as a powerful and flexible tool to model measurement bias with the aim of improving the reliability of the consensus value and its associated uncertainty in a fully Bayesian framework. The approach also allows to compute the contributions of the observed variables to the bias of the laboratories, under additional hypotheses. More generally a global Bayesian framework is proposed to improve the quality of measurements. The approach is illustrated on the structural equation modelling of measurement bias in interlaboratory comparisons in environment.
5

Approche bayésienne de l'évaluation de l'incertitude de mesure : application aux comparaisons interlaboratoires / Bayesian approach for the evaluation of measurement uncertainty applied to interlaboratory comparisons

Demeyer, Séverine 04 March 2011 (has links)
La modélisation par équations structurelles est très répandue dans des domaines très variés et nous l'appliquons pour la première fois en métrologie dans le traitement de données de comparaisons interlaboratoires. Les modèles à équations structurelles à variables latentes sont des modèles multivariés utilisés pour modéliser des relations de causalité entre des variables observées (les données). Le modèle s'applique dans le cas où les données peuvent être regroupées dans des blocs disjoints où chaque bloc définit un concept modélisé par une variable latente. La structure de corrélation des variables observées est ainsi résumée dans la structure de corrélation des variables latentes. Nous proposons une approche bayésienne des modèles à équations structurelles centrée sur l'analyse de la matrice de corrélation des variables latentes. Nous appliquons une expansion paramétrique à la matrice de corrélation des variables latentes afin de surmonter l'indétermination de l'échelle des variables latentes et d'améliorer la convergence de l'algorithme de Gibbs utilisé. La puissance de l'approche structurelle nous permet de proposer une modélisation riche et flexible des biais de mesure qui vient enrichir le calcul de la valeur de consensus et de son incertitude associée dans un cadre entièrement bayésien. Sous certaines hypothèses l'approche permet de manière innovante de calculer les contributions des variables de biais au biais des laboratoires. Plus généralement nous proposons un cadre bayésien pour l'amélioration de la qualité des mesures. Nous illustrons et montrons l'intérêt d'une modélisation structurelle des biais de mesure sur des comparaisons interlaboratoires en environnement. / Structural equation modelling is a widespread approach in a variety of domains and is first applied here to interlaboratory comparisons in metrology. Structural Equation Models with latent variables (SEM) are multivariate models used to model causality relationships in observed variables (the data). It is assumed that data can be grouped into separate blocks each describing a latent concept modelled by a latent variable. The correlation structure of the observed variables is transferred into the correlation structure of the latent variables. A Bayesian approach of SEM is proposed based on the analysis of the correlation matrix of latent variables using parameter expansion to overcome identifiability issues and improving the convergence of the Gibbs sampler. SEM is used as a powerful and flexible tool to model measurement bias with the aim of improving the reliability of the consensus value and its associated uncertainty in a fully Bayesian framework. The approach also allows to compute the contributions of the observed variables to the bias of the laboratories, under additional hypotheses. More generally a global Bayesian framework is proposed to improve the quality of measurements. The approach is illustrated on the structural equation modelling of measurement bias in interlaboratory comparisons in environment.

Page generated in 0.0778 seconds