• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localisation et cartographie simultanées par ajustement de faisceaux local : propagation d'erreurs et réduction de la dérive à l'aide d'un odomètre / Simultaneous localization and mapping by local beam adjustment : error propagation and drift reduction using an odometer

Eudes, Alexandre 14 March 2011 (has links)
Les travaux présentés ici concernent le domaine de la localisation de véhicule par vision artificielle. Dans ce contexte, la trajectoire d’une caméra et la structure3D de la scène filmée sont estimées par une méthode d’odométrie visuelle monoculaire basée sur l’ajustement de faisceaux local. Les contributions de cette thèse sont plusieurs améliorations de cette méthode. L’incertitude associée à la position estimée n’est pas fournie par la méthode d’ajustement de faisceaux local. C’est pourtant une information indispensable pour pouvoir utiliser cette position, notamment dans un système de fusion multi-sensoriel. Une étude de la propagation d’incertitude pour cette méthode d’odométrie visuelle a donc été effectuée pour obtenir un calcul d’incertitude temps réel et représentant l’erreur de manière absolue (dans le repère du début de la trajectoire). Sur de longues séquences (plusieurs kilomètres), les méthodes monoculaires de localisation sont connues pour présenter des dérives importantes dues principalement à la dérive du facteur d’échelle (non observable). Pour réduire cette dérive et améliorer la qualité de la position fournie, deux méthodes de fusion ont été développées. Ces deux améliorations permettent de rendre cette méthode monoculaire exploitable dans le cadre automobile sur de grandes distances tout en conservant les critères de temps réel nécessaire dans ce type d’application. De plus, notre approche montre l’intérêt de disposer des incertitudes et ainsi de tirer parti de l’information fournie par d’autres capteurs. / The present work is about localisation of vehicle using computer vision methods. In this context, the camera trajectory and the 3D structure of the scene is estimated by a monocular visual odometry method based on local bundle adjustment. This thesis contributions are some improvements of this method. The uncertainty of the estimated position was not provided by the local bundle adjustment method. Indeed, this uncertainty is crucial in a multi-sensorial fusion system to use optimally the estimated position. A study of the uncertainty propagation in this visual odometry method has been done and an uncertainty calculus method has been designed to comply with real time performance. By the way, monocular visual localisation methods are known to have serious drift issues on long trajectories (some kilometers). This error mainly comes from bad propagation of the scale factor. To limit this drift and improve the quality of the given position, we proposed two data fusion methods between an odometer and the visual method. Finally, the two improvements presented here allow us to use visual localisation method in real urban environment on long trajectories under real time constraints.
2

Approches 2D/2D pour le SFM à partir d'un réseau de caméras asynchrones / 2D/2D approaches for SFM using an asynchronous multi-camera network

Mhiri, Rawia 14 December 2015 (has links)
Les systèmes d'aide à la conduite et les travaux concernant le véhicule autonome ont atteint une certaine maturité durant ces dernières aimées grâce à l'utilisation de technologies avancées. Une étape fondamentale pour ces systèmes porte sur l'estimation du mouvement et de la structure de l'environnement (Structure From Motion) pour accomplir plusieurs tâches, notamment la détection d'obstacles et de marquage routier, la localisation et la cartographie. Pour estimer leurs mouvements, de tels systèmes utilisent des capteurs relativement chers. Pour être commercialisés à grande échelle, il est alors nécessaire de développer des applications avec des dispositifs bas coûts. Dans cette optique, les systèmes de vision se révèlent une bonne alternative. Une nouvelle méthode basée sur des approches 2D/2D à partir d'un réseau de caméras asynchrones est présentée afin d'obtenir le déplacement et la structure 3D à l'échelle absolue en prenant soin d'estimer les facteurs d'échelle. La méthode proposée, appelée méthode des triangles, se base sur l'utilisation de trois images formant un triangle : deux images provenant de la même caméra et une image provenant d'une caméra voisine. L'algorithme admet trois hypothèses: les caméras partagent des champs de vue communs (deux à deux), la trajectoire entre deux images consécutives provenant d'une même caméra est approximée par un segment linéaire et les caméras sont calibrées. La connaissance de la calibration extrinsèque entre deux caméras combinée avec l'hypothèse de mouvement rectiligne du système, permet d'estimer les facteurs d'échelle absolue. La méthode proposée est précise et robuste pour les trajectoires rectilignes et présente des résultats satisfaisants pour les virages. Pour affiner l'estimation initiale, certaines erreurs dues aux imprécisions dans l'estimation des facteurs d'échelle sont améliorées par une méthode d'optimisation : un ajustement de faisceaux local appliqué uniquement sur les facteurs d'échelle absolue et sur les points 3D. L'approche présentée est validée sur des séquences de scènes routières réelles et évaluée par rapport à la vérité terrain obtenue par un GPS différentiel. Une application fondamentale dans les domaines d'aide à la conduite et de la conduite automatisée est la détection de la route et d'obstacles. Pour un système asynchrone, une première approche pour traiter cette application est présentée en se basant sur des cartes de disparité éparses. / Driver assistance systems and autonomous vehicles have reached a certain maturity in recent years through the use of advanced technologies. A fundamental step for these systems is the motion and the structure estimation (Structure From Motion) that accomplish several tasks, including the detection of obstacles and road marking, localisation and mapping. To estimate their movements, such systems use relatively expensive sensors. In order to market such systems on a large scale, it is necessary to develop applications with low cost devices. In this context, vision systems is a good alternative. A new method based on 2D/2D approaches from an asynchronous multi-camera network is presented to obtain the motion and the 3D structure at the absolute scale, focusing on estimating the scale factors. The proposed method, called Triangle Method, is based on the use of three images forming a. triangle shape: two images from the same camera and an image from a neighboring camera. The algorithrn has three assumptions: the cameras share common fields of view (two by two), the path between two consecutive images from a single camera is approximated by a line segment, and the cameras are calibrated. The extrinsic calibration between two cameras combined with the assumption of rectilinear motion of the system allows to estimate the absolute scale factors. The proposed method is accurate and robust for straight trajectories and present satisfactory results for curve trajectories. To refine the initial estimation, some en-ors due to the inaccuracies of the scale estimation are improved by an optimization method: a local bundle adjustment applied only on the absolute scale factors and the 3D points. The presented approach is validated on sequences of real road scenes, and evaluated with respect to the ground truth obtained through a differential GPS. Finally, another fundamental application in the fields of driver assistance and automated driving is road and obstacles detection. A method is presented for an asynchronous system based on sparse disparity maps

Page generated in 0.0889 seconds