Return to search

3D Printing of Magnesium- and Manganese-Based Metal-Organic Frameworks for Gas Separation Applications

Metal Organic Frameworks (MOFs) are a class of porous materials that are predominantly obtained as powders and have been investigated as a solid sorbent for gas separation or carbon capture applications from combustion exhaust gases. The manufacturing of products with MOFs to use them for real life applications is still a major problem. The most common productization method used is to form pellets of the powder MOFs. This has a limitation on the product shape which makes it difficult for it to be used in gas separation applications. This study focuses on using additive manufacturing technique to give MOFs a lattice (mesh-like) geometry which is useful for gas separation applications as the mixture of gases would be able to pass through the lattice structure and be separated due to the inherent MOF properties and characteristics. Two MOFs based on magnesium and manganese salts have been studied in this project. An extrudable paste developed using alginate gel as a binder with these MOFs. With alterations in paste formulations and 3D printer parameters, lattice structures were printed using the two MOFs. CO2 and N2 gas uptakes were measured showing that the structure adsorbs CO2 gas to a higher extend which results in the separation of N2 gas in both materials. When compared to their pristine powder form, other properties of the MOFs such as crystallinity, microstructure, reusability and surface area remain to be preserved after being 3D printed in both cases.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-471718
Date January 2022
CreatorsDeole, Dhruva
PublisherUppsala universitet, Nanoteknologi och funktionella material
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMATVET Materialteknik

Page generated in 0.0022 seconds