Return to search

Utilizing CO2 from biomethane production : Sustainability and climate performance

Biogas solutions offer many benefits for the environment and society, including organic waste treatment as well as being an enabler for energy and nutrient recovery. The products of anaerobic digestion are a biogas, which contains a share of 30 to 50% carbon dioxide (CO2) and 50 to 70% methane, and a liquid remanent, rich in nutrients. The biogas can be upgraded by removing the CO2 to increase the energy content, producing biomethane. At present, CO2 is considered a waste in biomethane production systems, and hence it is emitted into the atmosphere. Nevertheless, biogas upgrading technologies separate a pure-grade CO2 and, likewise, carbon capture processes, providing a pure CO2 flow that can be stored or utilized. Compared to storage, carbon capture and utilization (CCU) technologies deliver valuable carbon-based products required to sustain human activities. The valorization of green CO2 could aid the transition towards defossilization of the economy. Indeed, several CO2 utilization technologies could be incorporated into biomethane production systems, but there is still a limited understanding of the available alternatives and their potential impacts on biomethane systems. This thesis aims to investigate the integration of CO2 utilization technologies in biomethane production systems by revealing its potential, identifying alternatives, and assessing the impacts of the integration. Using Sweden as an example, scenarios of future biomethane production were employed to estimate the potential CO2 available for utilization. To complement the analysis, a qualitative approach made possible the identification of aspects that could affect CO2 utilization in biomethane production. Moreover, a multi-criteria analysis (MCA) framework was developed to identify relevant indicators for assessment and available alternatives for CO2 utilization. The research also includes a life cycle assessment (LCA) to evaluate the climate performance of relevant CCU alternatives in the biomethane production system. Results show that 160 kt of CO2 could be obtained from biomethane production in Sweden, which could potentially increase threefold from 2020 to 2030. The evaluation of alternatives for CO2 utilization includes environmental, technical, economic, and social criteria with sound indicators within an MCA framework. Indicators to evaluate each criterion provide valuable information to identify feasible and sustainable alternatives that can be integrated into biomethane plants. The identified alternatives with a high readiness level are additional methane through methanation, horticulture, mineral carbonates, fuels, pH control, bulk chemicals, and liquefied CO2 for direct use. The results provide information to decision-makers in relation to considerations to take before implementation, like energy requirements, the existence of regulations and standards, and uncertainty. In terms of the climate performance of biomethane with the inclusion of CCU alternatives, the results show a possible reduction of CO2 emissions that depends on the possibility of substituting fossil-based products. The investigated alternatives all result in lower emissions, but concrete curing and methanation using renewable hydrogen produce the best results. To conclude, the potential future increase of green CO2 from biomethane in Sweden creates opportunities to substitute fossil carbon in current applications and mature conversion pathways. Moreover, the inclusion of CCU in biomethane production contributes to reducing biomethane system emissions and diversifying its products. Possible alternatives of CCU that can be integrated into biomethane production systems in the short term include methanation and concrete curing. Other alternatives could be possible but present lower performance and higher uncertainties at the moment. / Biogaslösningar kan ge en mängd positiva miljömässiga och samhällsviktiga effekter, inklusive behandling av organiskt avfall och framställning av energi och näringsämnen. Produkterna från anaerob rötning är dels biogas, som består från 30 till 50% av koldioxid (CO2) och 50 till 70% av metan, dels en flytande rötrest med högt näringsinnehåll. Biogasen kan uppgraderas genom att ta bort CO2 för att öka energiinnehållet, och på så vis framställs biometan. CO2 ses för närvarande som en restprodukt i produktionssystemet och släpps därför vanligtvis ut i atmosfären. Tekniker för uppgradering av biogas liknar dock processer för infångning av CO2, där högkoncentrerade flöden av CO2 lagras (CCS) eller används (CCU). Till skillnad från lagring bidrar tekniken för CCU till att skapa produkter som behövs för att upprätthålla samhällsviktiga funktioner. Dessa valoriseringar av grön CO2 skulle kunna stödja övergången mot ett fossilfritt ekonomiskt system. Faktum är att det finns ett flertal tekniker som skulle kunna integreras i produktionssystem för biometan, men kunskapen om dessa tekniker och deras inverkan på biometansystemet är begränsad. Denna avhandling syftar till att undersöka integrationen av tekniska lösningar för nyttiggörande av CO2 vid framställning av biometan genom att påvisa dess potential, identifiera alternativa tekniska lösningar, och utvärdera integrationens följder. Med Sverige som exempel skapades scenarier för framtida biometanproduktion för att uppskatta mängden CO2 som skulle kunna tas om hand. Som ett komplement till dessa uppskattningar tillämpades ett kvalitativt tillvägagångssätt som identifierade aspekter som skulle kunna påverka CO2-användningen vid biometanproduktion. Dessutom utvecklades ett multikriterieanalytiskt (MCA) ramverk för att identifiera relevanta indikatorer för utvärdering och möjliga alternativ för CO2-användning. En livscykelanalys (LCA) tillämpades även för att utvärdera klimatprestandan för relevanta CCU-alternativ inom produktionssystem för biometan. Forskningsresultaten visar att 160 kt skulle kunna erhållas från biometanproduktion i Sverige. För Sveriges del finns det en potential att öka den insamlade mängden CO2 från biometan upp till tre gånger under perioden 2020 till 2030. I utvärderingen av de tekniska lösningarna inkluderas miljömässiga, tekniska, ekonomiska och regulatoriska kriterier för indikatorer inom ett MCA-ramverk. Dessa indikatorer användes för att utvärdera hur respektive kriterium bidrar till att identifiera realiserbara tekniska lösningar som kan integreras i biometananläggningar. De identifierade teknikerna med hög mognadsgrad är framställning av ytterligare metan genom metanisering, biomassa, karbonatmineral, bränslen, pH-värdesreglering, baskemikalier och flytande CO2 för direkt användning. Varje alternativ har dock faktorer som skulle kunna hindra implementering, såsom höga energikrav, lagstiftningar och standarder samt hög osäkerhet. När det gäller klimatprestandan för biometan med olika CCU-alternativ visar resultaten på en möjlig minskning av CO2-utsläpp som beror på möjligheten att substituera fossilbaserade produkter. Alla de undersökta alternativen resulterar i lägre utsläpp, men härdning av betong och metanisering med förnybar vätgas ger bäst resultat. Slutsatsen som dras är att det finns en stor potential i Sverige att framställa grön CO2 från biometan vilken skulle skapa flera möjligheter att byta fossilbaserade produkter i nuvarande tillämpningar. Införandet av CCU i biometanproduktion kan dessutom bidra till att minska biogassystemets utsläpp och diversifiera produktutbudet. Möjliga alternativ för CCU som kan integreras med biometanproduktionssystem på kort sikt inkluderar metanisering och betonghärdning. Andra alternativ kan också vara aktuella, men uppvisar för närvarande lägre prestanda och högre osäkerhet. / <p>Funding agency: The Kamprad Family Foundation</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-193674
Date January 2023
CreatorsCordova, Stephanie S.
PublisherLinköpings universitet, Industriell miljöteknik, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Licentiate Thesis, 0280-7971 ; 1966

Page generated in 0.0025 seconds